Useful Mathematical Definitions and Tables

Definition of modulus for integers

Let \(n\in\mathbb{Z}\) and \(N \in \mathbb{N}\). The mod operator \[n \% N = \left\{ \begin{array}{cc} \text{remainder}\left(\frac{n}{N}\right) & n \geq 0\\ N - \text{remainder}\left(\frac{|n|}{N}\right) & n < 0 \end{array} \right.\] where \(\text{remainder}\) is the remainder after dividing \(n\) by \(N\).

Table of Representative Convolution Integrals

CT Convolution Table
\(x_1(t)\) \(x_2(t)\) \(x_1(t) * x_2(t)\)
\(u(t)\) \(e^{a t}u(t)\) \(\frac{1-e^{a t}}{-a}u(t)\)
\(u(t)\) \(u(t)\) \(tu(t)\)
\(e^{a_1 t}u(t)\) \(e^{a_2 t}u(t)\) \(\frac{e^{a_1 t}-e^{a_2 t}}{a_1 - a_2}u(t)\) for \(a_1 \neq a_2\)
\(e^{a t}u(t)\) \(e^{a t}u(t)\) \(te^{a t}u(t)\)
\(te^{a_1 t}u(t)\) \(e^{a_2 t}u(t)\) \(\frac{e^{a_2 t}-e^{a_1 t} + (a_1-a_2)te^{a_1 t}}{(a_1 - a_2)^2}u(t)\) for \(a_1 \neq a_2\)
\(e^{a_1 t}\cos(\beta t + \theta)u(t)\) \(e^{a_2 t}u(t)\) \(\frac{\cos(\theta - \phi)e^{a_2 t} - e^{a_1 t}\cos(\beta t + \theta - \phi)}{\sqrt{(a_1 + a_2)^2 + \beta^2}}u(t)\)
\(\phi = \arctan\left( \frac{-\beta}{a_1 + a_2}\right)\)

Table of Representative Convolution Sums

DT Convolution Table
\(x_1[n]\) \(x_2[n]\) \(x_1[n] * x_2[n]\)
\(u[n]\) \(u[n]\) \((n+1)u[n]\)
\(\gamma^{n}u[n]\) \(u[n]\) \(\frac{1-\gamma^{n+1}}{1-\gamma}u[n]\)
\(\gamma_1^{n}u[n]\) \(\gamma_2^{n}u[n]\) \(\frac{\gamma_1^{n+1}-\gamma_2^{n+1}}{\gamma_1-\gamma_2}u[n]\) for \(\gamma_1 \neq \gamma_2\)
\(\gamma^{n}u[n]\) \(\gamma^{n}u[n]\) \((n+1)\gamma^{n}u[n]\)
\(|\gamma_1|^{n}\cos\left(\beta n + \theta \right)u[n]\) \(|\gamma_2|^{n}u[n]\) \(\frac{1}{R}\left[ |\gamma_1|^{n+1}\cos\left( \beta (n+1) + \theta - \phi\right) - |\gamma_2|^{n+1}\cos\left( \theta - \phi\right)\right]u[n]\)
\(R = \left[ |\gamma_1|^2 + |\gamma_2|^2 -2|\gamma_1||\gamma_2|\cos(\beta)\right]^{\frac{1}{2}}\)
\(\phi = \arctan\left( \frac{|\gamma_1|\sin(\beta)}{|\gamma_1|\cos(\beta) - |\gamma_2|} \right)\)

Table of Representative CT Fourier Transform Pairs

CT Fourier Transform Table
\(x(t)\) \(X(j\omega)\)
\(1\) \(2\pi\delta(\omega)\)
\(\delta(t)\) \(1\)
\(u(t)\) \(\pi\delta(\omega) + \frac{1}{j\omega}\)
\(e^{-at}u(t)\) \(\frac{1}{a + j\omega}\) for \(Re\{a\} > 0\)
\(te^{-at}u(t)\) \(\frac{1}{\left(a + j\omega\right)^2}\) for \(Re\{a\} > 0\)
\(e^{j\omega_0 t}\) \(2\pi\delta(\omega-\omega_0)\)
\(\cos(\omega_0 t)\) \(\pi\left[ \delta(\omega-\omega_0) + \delta(\omega+\omega_0)\right]\)
\(\sin(\omega_0 t)\) \(j\pi\left[ \delta(\omega+\omega_0) - \delta(\omega-\omega_0)\right]\)
\(e^{-at}\cos(\omega_0 t)u(t)\) \(\frac{a+j\omega}{(a+j\omega)^2 + \omega_0^2}\) for \(Re\{a\} > 0\)
\(e^{-at}\sin(\omega_0 t)u(t)\) \(\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2}\) for \(Re\{a\} > 0\)
\(\delta(t - t_0)\) \(e^{-j t_0 \omega}\)
\(K_0\) \(2 K_0 \pi \delta(\omega)\)
\(e^{-a|t|}\), \(\text{Re}\{a\} > 0\) \(\frac{2a}{a^2 + \omega^2}\)
\(u(t + T) - u(t - T)\) \(2T \frac{\sin{(\omega T)}}{\omega T}\)
\(\frac{\sin{({W}t)}}{W t}\) \(\frac{\pi}{W} [u(\omega + W) - u(\omega - W)]\)
\(e^{-\frac{t^2}{2 \sigma^2}}\) \(\sigma \sqrt{2 \pi} e^{-\frac{\sigma^2 \omega^2}{2}}\)
\(\sum\limits_{k=-\infty}^{\infty} a_k e^{j k \omega_0 t}\) \(2 \pi \sum\limits_{k=-\infty}^{\infty} a_k \delta{(\omega - k \omega_0)}\)
\(\sum\limits_{n=-\infty}^{\infty} \delta(t - nT)\) \(\omega_0 \sum\limits_{k=-\infty}^{\infty} \delta{(\omega - k \omega_0)}\), \(\omega_0 = \frac{2 \pi}{T}\)

Table of Representative DT Fourier Transform Pairs

DT Fourier Transform Table
\(x[n]\) \(X(e^{j\omega})\)
\(\delta[n]\) \(1\)
\(\delta[n - n_0]\) \(e^{-j \omega n_0}\)
\(u[n]\) \(\frac{1}{1 - e^{-j \omega}} + \pi \sum\limits_{k = - \infty}^{\infty} \delta(\omega - 2 k \pi)\)
\(K_0\) \(2 K_0 \pi \sum\limits_{k = - \infty}^{\infty} \delta(\omega - 2 k \pi)\)
\(a^n u[n]\), \(|a| < 1\) \(\frac{1}{(1 - ae^{-j \omega)}}\)
\(n a^n u[n]\), \(|a| < 1\) \(\frac{a e^{-j \omega}}{(1 - a e^{-j \omega})^2}\)
\(a^{|n|}\), \(|a| < 1\) \(\frac{1-a^2}{1 - 2 a \cos{\omega} + a^2}\)
\(e^{j \omega_0 n}\) \(2 \pi \sum\limits_{k = - \infty}^{\infty} \delta{(\omega - \omega_0 - 2 k \pi)}\)
\(\cos{(\omega_0 n)}\) \(\pi \sum\limits_{k = - \infty}^{\infty} [\delta(\omega + \omega_0 - 2 k \pi) + \delta(\omega - \omega_0 - 2 k \pi)]\)
\(\sin{(\omega_0 n)}\) \(j \pi \sum\limits_{k = - \infty}^{\infty} [\delta(\omega + \omega_0 - 2 k \pi) - \delta(\omega - \omega_0 - 2 k \pi)]\)
\(u[n + n_0] - u[n - n_0]\) \(\frac{\sin{(\omega (n_0 + 0.5))}}{\sin{0.5 \omega}}\)
\(\frac{\sin{({W}n)}}{\pi n}\) \(\sum\limits_{k = - \infty}^{\infty} X_1(\omega - 2 k \pi), X_1(\omega) = \begin{array}{cc} 1 & 0 \le |\omega| \le W, 0 < W < \pi\\ 0 & W < |\omega| \le \pi, 0 < W < \pi \end{array}\)
\(\sum\limits_{k=n_0}^{n_0+N-1} a_k e^{j k \omega_0 n}\) \(2 \pi \sum\limits_{k=-\infty}^{\infty} a_k \delta{(\omega - k \omega_0)}\), \(\omega_0 = \frac{2 \pi}{N}\),
\(\sum\limits_{k=-\infty}^{\infty} \delta[n - kN]\) \(\omega_0 \sum\limits_{k=-\infty}^{\infty} \delta{(n - k \omega_0)}\), \(\omega_0 = \frac{2 \pi}{N}\),