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Preface



To the student:

This is a set of supplementary notes and examples for ECE 2714. It is not a replacement for the textbook, but can act as a reference and guide your reading. These notes are not comprehensive – often additional material and insights are covered during class.

This material is well covered in the official course text “Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. Signals and Systems, Prentice Hall Pearson, 1996.” (abbreviated OW). This is an older, but very good book. However there are many, many texts that cover the same material. Engaged reading a textbook is one of the most important things you can do to learn this material. Again, these notes should not be considered a replacement for a textbook.



To the instructor:

These notes are simply a way to provide some consistency in topic coverage and notation between and within semesters. Feel free to share these with your class but you are under no obligation to do so. There are many alternative ways to motivate and develop this material and you should use the way that you like best. This is just how I do it.

Each chapter corresponds to a “Topic Learning Objective” and would typically be covered in one class meeting on a Tuesday-Thursday or Monday-Wednesday schedule. Note CT and DT topics are taught interleaved rather than in separate blocks. This gets the student used to going back and forth between the two signal and system types. We introduce time-domain topics first, followed by (real) frequency domain topics, using complex frequency domain for sinusoidal analysis only and as a bridge. Detailed analysis and application of Laplace and Z-transforms is left to ECE 3704.
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1 Course Introduction

The concepts and techniques in this course are probably the most useful in engineering. A signal is a function of one or more independent variables conveying information about a physical (or virtual) phenomena. A system may respond to signals to produce other signals, or produce signals directly.



[image: Diagram showing how the input of a sytem is related to the output.]

A block diagram representing a system.



This course is about the mathematical models and related techniques for the design and understanding of systems as signal transformations. We focus on a broadly useful class of systems, known as linear, time-invariant systems. You will learn about:


	the representation and analysis of signals as information carrying channels


	and how to analyze and implement linear, time-invariant systems to transform those signals.





1.1 Example Signals and Systems



Example




Electrical Circuits. This is a Sallen-Key filter, a second-order system commonly use to select frequencies from a signal:



[image: Diagram showing a circuit corresponding to a Sallen-Key filter.]

A circuit that implements a Sallen-Key filter.



There are two signals we can easily identify, the input signal as the voltage applied across x(t)x(t), and the output voltage measured across y(t)y(t). We build on your circuits course by viewing this circuit as an implementation of a more abstract linear system. We see how it can be viewed as a frequency selective filter. We will see how to answer questions such as: how do we choose the values of the resistors and capacitors to select the frequencies we are interested in? and how do we determine what those frequencies are?







Example




Robotic Joint. This is a Linear, Time-Invariant model of a DC motor, a mixture of electrical and mechanical components.



[image: Diagram showing a model of a DC motor.]

A model of a DC motor.



How do we convert the motor into a servo for use in a robotic joint? What are its characteristics (e.g. how fast can it move)?







Example




Audio Processing. Suppose you record an interview for a podcast, but during an important part of the discussion, the HVAC turns on and there is an annoying noise in the background.



[image: A plot of a noisy signal in the time domain.]

A plot of a noisy signal in the time domain.



How could you remove the noise minimizing distortion to the rest of the audio?







Example




Communications. Consider a wireless sensor, that needs to transmit to a base station, e.g. a wireless mic system.



[image: Diagram illustrating a wireless transmitter and reciever.]

Diagram illustrating a wireless transmitter and reciever.



How should the signal be processed so it can be transmitted? How should the received signal be processed?







1.2 Types of Problems

Applications of this material occur in all areas of science and engineering. When we have a measured output but are unsure what combination of inputs and system components could have produced it, we have a modeling problem.



[image: a block diagram showing an unknown system and input, but known output y]

A Modeling Problem



Models are the bedrock of the scientific method and are required to apply the concepts of this course to engineering problems.

When we know the input and the system description and desire to know the output we have an analysis problem.



[image: a block diagram showing a known input and system, but unknown label]

An Analysis Problem



Analysis problems are the kind you have encountered most often already. For example, given an electrical circuit and an applied voltage or current, what are the voltages and currents across and through the various components.

When we know either the input and desired output and seek the system to perform this transformation,



[image: a block diagram showing unknown system, but known input and output]

An System Identification Problem



or we know the system description and output and desire the input that would generate the output,



[image: a block diagram showing unknown input, but known system and output.]

An Input Identification Problem



we have a design problem or identification problem.

This course focuses on modeling and analysis with applications to electrical circuits and devices for measurement and control of the physical world and is broadly applicable to all ECE majors. Some Examples:


	Controls, Robotics, & Autonomy: LTI systems theory forms the basis of perception and control of machines.


	Communications & Networking: LTI systems theory forms the basis of transmission and reception of signals, e.g. AM and FM radio.


	Machine Learning: LTI systems are often used to pre-process samples or to create basis functions to improve learning.


	Energy & Power Electronic Systems: linear circuits are often modeled as LTI systems.




Subsequent courses, e.g. ECE 3704, focus more on analysis and design.



1.3 Learning Objectives

The learning objectives (LOs) for the course are:


	Describe a given system using a block-level description and identify the input/output signals.


	Mathematically model continuous and discrete linear, time-invariant systems using differential and difference equations respectively.


	Analyze the use of filters and their interpretation in the time and frequency domains and implement standard filters in hardware and/or software.


	Apply computations of the four fundamental Fourier transforms to the analysis and design of linear systems.


	Communicate solutions to problems and document projects within the domain of signals and systems through formal written documents.




These are broken down further into the following topic learning objectives (TLOs). The TLOs generally map onto one class meeting but are used extensively in later TLOs.

TLO 1: Course introduction (OW Forward and §1.0)

TLO 2: Continuous-time (CT) signals (OW §1.1 through 1.4 and 2.5): A continuous-time (CT) signal is a function of one or more independent variables conveying information about a physical phenomena. This lecture gives an introduction to continuous-time signals as functions. You learn how to characterize such signals in a number of ways and are introduced to two very important signals: the unit impulse and the complex exponential.

TLO 3: Discrete-time (DT) signals (OW §1.1 through 1.4)

TLO 4: CT systems as linear constant coefficient differential equations (OW §2.4.1)

TLO 5: DT systems as linear constant coefficient difference equations (OW §2.4.2)

TLO 6: Linear time invariant CT systems (OW §1.5, 1.6, 2.3)

TLO 7: Linear time invariant DT systems (OW §1.5, 1.6, 2.3)

TLO 8: CT convolution (OW §2.2)

TLO 9: DT convolution (OW §2.1)

TLO 10: CT block diagrams (OW §1.5.2 and 2.4.3)

TLO 11: DT block diagrams (OW §1.5.2 and 2.4.3)

TLO 12: Eigenfunctions of CT systems (OW §3.2 and 3.8)

TLO 13: Eigenfunctions of DT systems (OW §3.2 and 3.8)

TLO 14: CT Fourier Series representation of signals (OW §3.3 through 3.5)

TLO 15: DT Fourier Series representation of signals (OW §3.6 and 3.7)

TLO 16: CT Fourier Transform (OW §4.0 through 4.7)

TLO 17: DT Fourier Transform (OW §5.0 though 5.8)

TLO 18: CT Frequency Response (OW §6.1, 6.2, 6.5)

TLO 19: DT Frequency Response (OW §6.1, 6.2, 6.6)

TLO 20: Frequency Selective Filters in CT (OW §3.9, 3.10, 6.3, 6.4)

TLO 21: Frequency Selective Filters in DT (OW §3.11, 6.3, 6.4)

TLO 22: The Discrete Fourier Transform

TLO 23: Sampling (OW §7.1, 7.3, 7.4)

TLO 24: Reconstruction (OW §7.2)



1.4 Graphical Outline

[image: A hierarchical diagram showing the two main types of system representations, those in the time domain and those in the frequency domain. Under the time domain are differential and difference equations, impulse response, and circuit or block diagrams. Under frequency domain methods are the frequency response and the Eigenvalue or Transfer function representation.]

[image: A hierarchical diagram showing the corresponding analysis methods in the previous figure. For time domain we have solving differential or difference equations, or using convolution. For the frequency domain we have the Fourier series, Fourier transform, or the Eigenvalue analysis (for sinusoidal inputs)]





2 Continuous-Time Signals

A continuous-time (CT) signal is a function of one or more independent variables conveying information about a physical phenomena. This lecture gives an introduction to continuous-time signals as functions. You learn how to characterize such signals in a number of ways and are introduced to two very important signals: the unit impulse and the complex exponential.


2.1 Signals as Functions

In order to reason about signals mathematically we need a representation or model. Signals are modeled as functions, mappings between sets f:A→B
f: A \rightarrow B
 where AA is a set called the domain and BB is a set called the range.

The most basic classification of signals depends on the sets that makeup the domain and co-domain. We will be interested in two versions of the domain, the reals denoted ℝ\mathbb{R} and the integers denoted ℤ\mathbb{Z}. We will be interested in two versions of the co-domain, the reals ℝ\mathbb{R} and the set of complex numbers ℂ\mathbb{C}.



Example




Analog Signal: If the function f:ℝ→ℝf: \mathbb{R} \rightarrow \mathbb{R}, we call this an analog or real, continuous-time signal, e.g. a voltage at time t∈ℝt \in \mathbb{R}, v(t)v(t). We will write these as x(t)x(t), y(t)y(t), etc. The units of tt are seconds. Figure 2.1 shows some graphical representations, i.e. plots.






[image: Example plots of analog signals. Shows a plot of the unit step, causal real exponential, sinusoid, and a damped causal sinusoid.]



Figure 2.1: Example plots of analog signals.














Example




Real, Discrete-time Signal: If the function f:ℤ→ℝf: \mathbb{Z} \rightarrow \mathbb{R}, we call this a real, discrete-time signal, e.g. the temperature every day at noon. We will write these as x[n]x[n], y[n]y[n], etc. Note nn is dimensionless. Figure 2.2 shows some graphical representations.






[image: Example plots of real-valued, discrete-time signals. Shows a plot of the unit step, causal real exponential, sinusoid, and a damped causal sinusoid.]



Figure 2.2: Example plots of real-valued, discrete-time signals.












Some other possibilities:


	f:ℝ→ℤf: \mathbb{R} \rightarrow \mathbb{Z}, digital, continuous-time signals, e.g. the output of a general purpose pin on a microcontroller

	f:ℤ→ℤf: \mathbb{Z} \rightarrow \mathbb{Z}, digital, discrete-time signals, e.g. the signal on a computer bus



The co-domain can also be complex.


	f:ℝ→ℂf: \mathbb{R} \rightarrow \mathbb{C}, complex-valued, continuous-time signals, e.g. x(t)=ejωt=cos(ωt)+jsin(ωt)
x(t) = e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)


	f:ℤ→ℂf: \mathbb{Z} \rightarrow \mathbb{C}, complex-valued, discrete-time signals, e.g. x[n]=ejωn=cos(ωn)+jsin(ωn)
x[n] = e^{j\omega n} = \cos(\omega n) + j\sin(\omega n)




Since the domains ℝ\mathbb{R} and ℤ\mathbb{Z} are usually interpreted as time, we will call these time-domain signals. In the time-domain, when the co-domain is ℝ\mathbb{R} we call these real signals. All physical signals are real. However complex signals will become important when we discuss the frequency domain.



2.2 Primitive Models

We mathematically model signals by combining elementary/primitive functions, for example:


	polynomials: x(t)=tx(t) = t, x(t)=t2x(t) = t^2, etc.

	transendental functions: x(t)=etx(t) = e^t, x(t)=sin(t)x(t) = \sin(t), x(t)=cos(t)x(t) = \cos(t), etc.

	piecewise functions, e.g. x(t)={f1(t)t<0f2(t)t≥0
   x(t) = \left\{  \begin{array}{cl}
     f_1(t) & t < 0\\
     f_2(t) & t \geq 0\\
   \end{array}\right.






Example




Modeling a Switch: Consider a mathematical model of a switch, which moves positions at time t=0t = 0.




[image: Diagram showing a single pole, single throw switch connected to a unit DC source.]



Figure 2.3: Single pole, single throw switch connected to a unit DC source.




We use this model so much we give it it’s own name and symbol: Unit Step, u(t)u(t)

u(t)={0t<01t≥0
u(t) = \left\{  \begin{array}{cl}
        0 & t < 0\\
        1 & t \geq 0\\
      \end{array}\right.
 so a mathematical model of the switch circuit above would be x(t)=Vu(t)x(t) = V u(t).

Note: some texts define the step function at t=0t=0 to be 11 or 12\frac{1}{2}. It is typically plotted like so:




[image: plot showing a unit step function. See caption.]



Figure 2.4: Plot of the unit step function. It turns on at the time origin and stays on forever.










Example




Pure audio tone at “middle C”. A signal modeling the air pressure of a specific tone might be

x(t)=sin(2π(261.6)t)
  x(t) = \sin\left(2\pi (261.6) t\right)








Example




Chord. The chord “G”, an additive mixture of tones at G, B, and D and might be modeled as

x(t)=sin(2π(392)t)+sin(2π(494)t)+sin(2π(293)t)
x(t) = \sin\left(2\pi (392) t\right) + \sin\left(2\pi (494) t\right) + \sin\left(2\pi (293) t\right) 


This example shows we can use addition to build-up signals to approximate real signals of interest.







2.3 Basic Transformations

We can also apply transformations to signals to increase their modeling flexibility.


	magnitude scaling x2(t)=ax1(t)
x_2(t) = a x_1(t)
 for a∈ℝa \in \mathbb{R}.


	derivatives x2(t)=x1′(t)=dx1dt(t)
x_2(t) = x_1^\prime(t) = \frac{d x_1}{dt}(t)



	integrals x2(t)=∫−∞tx1(τ)dτ
x_2(t) = \int\limits_{-\infty}^t x_1(\tau) \; d\tau



	sums y(t)=∑ixi(t)
y(t) = \sum\limits_{i} x_i(t)
 an important example we will see is the CT Fourier series.




	multiplication (modulation) y(t)=x1(t)x2(t)
y(t) = x_1(t) x_2(t)
 For example amplitude modulation y(t)=x(t)sin(ω0t)y(t) = x(t)\sin(\omega_0 t)


	time shift x2(t)=x1(t+τ)
x_2(t) = x_1(t+\tau)



	if τ<0\tau <0 it is called a delay

	if τ>0\tau >0 it is called an advance




	time scaling x2(t)=x1(tτ)
  x_2(t) = x_1\left(\frac{t}{\tau}\right)
  


	if τ>1\tau >1 increasing τ\tau expands in time, slows down the signal

	if 0<τ<10 < \tau < 1 decreasing τ\tau contracts in time, speeds up the signal

	if −1<τ<0-1 < \tau <0 time reverses and increasing τ\tau contracts in time, speeding up the signal

	if τ<−1\tau < -1 time reverses and decreasing τ\tau expands in time, slows down the signal



Common uses are time reversal, x2(t)=x1(−t)x_2(t) = x_1(-t), and changing the frequency of of sinusoids.






2.4 Characterization of Signals

There are a few basic ways of characterizing signals.



Definition




Causal CT Signal. A CT signal is if x(t)=0x(t) = 0 ∀t<0\forall t < 0.

Anti-Causal CT Signal. A CT signal is or acausal if x(t)=0x(t) = 0 ∀t≥0\forall t \geq 0.





A signal can be written as the sum of a causal and anti-causal signal.



Definition




Periodic Signals. A CT signal is if x(t)=x(t+T)x(t) = x(t + T) ∀t\forall t for a fixed parameter T∈ℝT \in \mathbb{R} called the .





The simplest periodic signals are those based on the sinusoidal functions.



Definition




Even Signal. A CT signal is if x(t)=x(−t)x(t) = x(-t) ∀t\forall t.

Odd Signal.  A CT signal is if x(t)=−x(−t)x(t) = -x(-t) ∀t\forall t.





Any CT signal can be written in terms of an even and odd component x(t)=xe(t)+xo(t)
x(t) = x_e(t) + x_o(t) 
 where xe(t)=12{x(t)+x(−t)}xo(t)=12{x(t)−x(−t)}
\begin{array}{ll}
  x_e(t) &= \frac{1}{2}\left\{x(t) + x(-t)\right\} \\
  & \\
  x_o(t) &= \frac{1}{2}\left\{x(t) - x(-t)\right\}
\end{array}




Definition




Energy of a CT Signal. The energy of a CT signal x(t)x(t) is defined as a measure of the function Ex=limT→∞∫−TT|x(t)|2dt.
  E_x = \lim_{T\rightarrow\infty} \int\limits_{-T}^T \lvert x(t) \rvert^2 dt \; .
  







Definition




Power of a CT Signal. The power of a CT signal is the energy averaged over an interval as that interval tends to infinity. Px=limT→∞12T∫−TT|x(t)|2dt.
  P_x = \lim_{T\rightarrow\infty} \frac{1}{2T} \int_{-T}^T \lvert x(t)\rvert^2 dt \; .
  





Signals can be characterized based on their energy or power:


	Signals with finite, non-zero energy and zero power are called energy signals.

	Signals with finite, non-zero power (and by implication infinite energy) are called power signals.



Note, these categories are non-exclusive, some signals are neither energy or power signals.



2.5 Unit Impulse Function

An important CT signal is the unit impulse function, also called the “delta” δ\delta function for the symbol traditionally used to define it. Applying this signal to a system models a “kick” to that system. For example, consider striking a tuning fork. The reason this signal is so important is that it will turn out that the response of the system to this input tells us all we need to know about a linear, time-invariant system!



Example




CT Impulse Function. The CT impulse function is not really a function at all, but a mathematical object called a “distribution”. Some equivalent definitions:

δ(t)=limϵ→0{12ϵ|t|<ϵ0else
\delta(t) = \lim_{\epsilon \rightarrow 0}\left\{
\begin{array}{ll}
  \frac{1}{2\epsilon} & |t| < \epsilon\\
  0 & \text{else}
\end{array}
\right.


δ(t)=limϵ→012πϵe−t22ϵ2
\delta(t) = \lim_{\epsilon \rightarrow 0} \frac{1}{\sqrt{2\pi}\epsilon} e^{-\frac{t^2}{2\epsilon^2}}
 Note the area under each definition is always one.





In practice we can often use the following definition and some properties, without worrying about the distribution functions. δ(t)={0t≠0∞t=0
\delta(t) = \left\{
\begin{array}{ll}
  0 & t \neq 0\\
  \infty & t = 0
\end{array}
\right. 
 which we draw as a vertical arrow in plots:




[image: vertical arrow centered at time origin]



Figure 2.5: Plot of the CT delta function.




Note the height of the arrow is arbitrary. Often in the case of a non-unit impulse function the area is written in parenthesis near the arrow tip.

The following properties of the impulse function will be used often.


	The area under the unit impulse is unity since by definition ∫−∞∞δ(t)dt=1
\int\limits_{-\infty}^{\infty} \delta(t) \; dt = 1


	Sampling property: x(t)δ(t−t0)=x(t0)δ(t−t0)x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)

	Sifting Property: ∫abx(t)δ(t−t0)dt=x(t0)
\int\limits_{a}^{b} x(t)\delta(t-t_0) \; dt = x(t_0)
 for any a<t0<ba < t_0 < b.



We previously defined the unit step function. The impulse can be defined in terms of the step: δ(t)=dudt
\delta(t) = \frac{du}{dt}
 and vice-versa u(t)=∫−∞tδ(τ)dτ
u(t) = \int\limits_{-\infty}^{t} \delta(\tau) \; d\tau
 using the notion of distributions, e.g.

u(t)=∫−∞tδ(τ)dτ=limϵ→0∫−∞t12πϵe−τ22ϵ2dτ=limϵ→012(1+erf(t2ϵ))
u(t) = \int\limits_{-\infty}^{t} \delta(\tau) \; d\tau = \lim_{\epsilon \rightarrow 0} \int\limits_{-\infty}^{t} \frac{1}{\sqrt{2\pi}\epsilon} e^{-\frac{\tau^2}{2\epsilon^2}} \; d\tau = \lim_{\epsilon \rightarrow 0} \frac{1}{2}\left(1+\text{erf}\left( \frac{t}{\sqrt{2}\epsilon}\right)\right)


The step and impulse function are related, but in many cases finding the response of a system to a step input is easier.

We can apply additional transformations to the impulse and step functions to get other useful signals, e.g.


	ramp r(t)=∫−∞tu(τ)dτ=tu(t)
r(t) = \int\limits_{-\infty}^{t} u(\tau) \; d\tau = tu(t)


	causal pulse of width ϵ\epsilon p(t)=u(t)−u(t−ϵ)
p(t) = u(t) - u(t-\epsilon)


	non-causal pulse of width 2ϵ2\epsilon p(t)=u(t+ϵ)−u(t−ϵ)
    p(t) = u(t+\epsilon) - u(t-\epsilon)






2.6 CT Complex Exponential

One of the most important signals in systems theory is the complex exponential: x(t)=Ceat
x(t) = C\, e^{a t}
 where the parameters C,a∈ℂC, a \in \mathbb{C} in general.

When CC and aa are both real (ℑ(C)=ℑ(a)=0\Im(C) = \Im(a) = 0), we have the familiar exponential. When a>0a > 0 and C>0C > 0, x(t)=Ceatx(t) = C e^{a t} looks like:




[image: plot. refer to caption.]



Figure 2.6: Plot of the expoential function with real, positive parameter.




When a<0a < 0 and C>0C > 0, x(t)=Ceatx(t) = C e^{a t} looks like:




[image: plot. refer to caption.]



Figure 2.7: Plot of the expoential function with real, negative parameter.




If C<0C < 0 the signals reflect about the time axis.

To get the pure sinusoidal case, let C∈ℝC \in \mathbb{R} and aa be purely imaginary: a=jω0a = j\omega_0: x(t)=Cejω0t
x(t) = Ce^{j\omega_0 t}
 where ω0\omega_0 is the frequency (in radians/sec). This is called the complex sinusoid.

By Euler’s identity: ejω0t=cos(ω0t)+jsin(ω0t)
e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)
 and ℜ(x(t))=cos(ω0t)=12(ejω0t+e−jω0t)
\Re(x(t)) = \cos(\omega_0 t) = \frac{1}{2}\left( e^{j\omega_0 t} + e^{-j\omega_0 t} \right)


ℑ(x(t))=sin(ω0t)=12j(ejω0t−e−jω0t)
\Im(x(t)) = \sin(\omega_0 t) = \frac{1}{2j}\left( e^{j\omega_0 t} - e^{-j\omega_0 t} \right)
 are both real sinusoids.

Note that the sinusoids are periodic. Recall a signal x(t)x(t) is periodic with period TT if x(t)=x(t+T)∀t
x(t) = x(t+T) \; \forall t
 In the case of the complex sinusoid Cejω0t=Cejω0(t+T)=Cejω0tejω0T⏟must be 1
Ce^{j\omega_0 t} = Ce^{j\omega_0 (t+T)}= Ce^{j\omega_0 t}\underbrace{e^{j\omega_0 T}}_{\text{must be 1}}



	if ω0=0\omega_0 = 0 this is true for all TT

	if ω0≠0\omega_0 \neq 0, then to be periodic ω0T=2πm\omega_0 T = 2\pi m for m=±1,±2,⋯m = \pm 1, \pm 2, \cdots. The smallest TT for which this is true is the fundamental period T0T_0 T0=2π|ω0|
T_0 = \frac{2\pi}{|\omega_0|}
 or equivalently ω0=2πT0\omega_0 = \frac{2\pi}{T_0}



Some useful properties of sinusoids:


	If x(t)x(t) is periodic with period TT and gg is any function then g(x(t))g(x(t)) is periodic with period TT.

	If x1(t)x_1(t) is periodic with period T1T_1 and x2(t)x_2(t) is periodic with period T2T_2, and if there exists positive integers a,ba,b such that aT1=bT2=P
aT_1 = b T_2 = P
 then x1(t)+x2(t)x_1(t) + x_2(t) and x1(t)x2(t)x_1(t)x_2(t) are periodic with period PP



The last property implies that both T1T_1 and T2T_2 must both be rational in π\pi or neither should be. For example


	x(t)=sin(2πt)+cos(5πt)x(t) = \sin(2\pi t) + \cos(5\pi t) is periodic

	x(t)=sin(2t)+cos(5t)x(t) = \sin(2 t) + \cos(5 t) is periodic

	x(t)=sin(2πt)+cos(5t)x(t) = \sin(2\pi t) + \cos(5 t) is not periodic



When the parameter CC is complex we get a phase shift. Again let a=jω0a = j\omega_0. When CC is complex we can write it as C=AejϕC = Ae^{j\phi} where A=|C|A = |C| and ϕ=∠C\phi = \angle C. Then

x(t)=Aejϕejω0t=Aej(ω0t+ϕ)
x(t) = Ae^{j\phi} e^{j\omega_0 t} = Ae^{j(\omega_0 t+\phi)} 
 and ℜ(x(t))=Acos(ω0t+ϕ)
\Re(x(t)) = A\cos(\omega_0 t+\phi) 


ℑ(x(t))=Asin(ω0t+ϕ)
\Im(x(t)) = A\sin(\omega_0 t+\phi) 


Since sin\sin is a special case of cos\cos, i.e. cos(θ)=sin(θ+π2)\cos(\theta) = \sin(\theta + \frac{\pi}{2}), the general real sinusoid is

Acos(ω0t+ϕ)
A\cos(\omega_0 t + \phi)



	AA is called the amplitude

	ω0\omega_0 is again the frequency in radians/sec.

	ϕ\phi is called the phase shift and is related to a time shift TsT_s by ϕ=ω0Ts
\phi = \omega_0T_s




For example the signal graphically represented as follows






[image: Example plot of sinusoidal signal.]



Figure 2.8: Example plot of sinusoidal signal.








has the functional representation

x(t)=2cos(π2(t+12))=2cos(π2t+π4)
x(t) = 2\cos\left(\frac{\pi}{2} (t+\tfrac{1}{2}) \right) =  2\cos\left(\frac{\pi}{2} t +\frac{\pi}{4} \right)



2.6.1 Energy of CT complex sinusoid

Recall the energy of a CT signal x(t)x(t) is

Ex=limT→∞∫−TT|x(t)|2dt.
  E_x = \lim_{T\rightarrow\infty} \int\limits_{-T}^T \lvert x(t) \rvert^2 dt \; .
 Substituting x(t)=ejω0tx(t) = e^{j\omega_0 t} and letting T=NT0T = N T_0 Ex=limN→∞∫−NT0NT0|ejω0t|2⏟always 1dt=limN→∞2NT0=∞
    E_x = \lim_{N\rightarrow\infty} \int\limits_{-N T_0}^{N T_0} \underbrace{\lvert e^{j\omega_0 t} \rvert^2}_{\text{always 1}} \; dt = \lim_{N\rightarrow\infty} 2NT_0 = \infty




2.6.2 Power of CT complex sinusoid

Recall the power of a CT signal x(t)x(t) is Px=limT→∞12T∫−TT|x(t)|2dt.
  P_x = \lim_{T\rightarrow\infty} \frac{1}{2T} \int\limits_{-T}^T \lvert x(t) \rvert^2 dt \; .
 Again, substituting x(t)=ejω0tx(t) = e^{j\omega_0 t} and letting T=NT0T = N T_0 Px=limN→∞12NT0∫−NT0NT0|ejω0t|2⏟always 1dt=limN→∞12NT02NT0=1
  P_x = \lim_{N\rightarrow\infty} \frac{1}{2NT_0} \int\limits_{-N T_0}^{N T_0} \underbrace{\lvert e^{j\omega_0 t} \rvert^2}_{\text{always 1}} \; dt = \lim_{N\rightarrow\infty} \frac{1}{2NT_0} 2NT_0 = 1




2.6.3 Harmonics

Two CT complex sinusoids are harmonics of one another is both are periodic in T0T_0. This occurs when

xk(t)=ejkω0tfork=0,±1,±2,⋯
    x_k(t) = e^{jk\omega_0 t} \; \text{for} \; k = 0, \pm 1, \pm 2, \cdots


The term comes from music where the vibrations of a string instrument are modeled as a weighted combination of harmonic tones.



2.6.4 Geometric interpretation of the Complex Exponential

In the general case we get a sinusoid signal modulated by an exponential. Let C=AejϕC = Ae^{j\phi} and a=r+jω0a = r + j\omega_0, then x(t)=Ceat=Aejϕe(r+jω0)t
  x(t) = C e^{a t} =  Ae^{j\phi} e^{(r+j\omega_0)t}
 Expanding the terms and using Euler’s identity gives: x(t)=Aertcos(ω0t+ϕ)⏟ℜpart+jAertsin(ω0t+ϕ)⏟ℑpart
x(t) = \underbrace{Ae^{rt}\cos(\omega_0 t+\phi)}_{\Re \text{part}} + j \underbrace{Ae^{rt}\sin(\omega_0 t+\phi)}_{\Im \text{part}}
 Each part is a real sinusoid whose amplitude is modulated by a real exponential.

An important visualization of the general case is to view the signal x(t)x(t) as a vector rotating counter-clockwise in the complex plane for positive tt.




[image: A figure visualizing the CT complex sinusoid at a specific point in time.]



Figure 2.9: The CT complex sinusoid at a specific point in time.




For r<0r < 0 the tip of the arrow traces out an inward spiral, whereas for r>0r > 0 it traces out an outward spiral. For r=0r = 0 it traces out the unit circle.




2.7 Example Problems


2.7.1 

Consider a signal described by the function x(t)=e−3tsin(10πt)u(t)
  x(t) = e^{-3t}\sin(10\pi t)u(t)
   


	Determine the magnitude and phase of x(120)x\left( \frac{1}{20}\right)



Solution:

Substituting t=120t = \frac{1}{20} gives x(120)=e−3120sin(10π120)u(120)=e−320≈0.86
  x\left( \frac{1}{20}\right) = e^{-3\frac{1}{20}}\sin\left(10\pi \frac{1}{20}\right)u\left( \frac{1}{20}\right) = e^{-\frac{3}{20}} \approx 0.86
   Since the signal is purely real and exponential is always positive, the magnitude is |x(120)|=|e−320|=e−320≈0.86
  \left|x\left( \frac{1}{20}\right)\right| = \left| e^{-\frac{3}{20}}\right| =  e^{-\frac{3}{20}}  \approx 0.86
   and the phase is ∠x(120)=0
  \angle x\left( \frac{1}{20}\right) = 0
  


	Using Matlab, plot the signal |x(t)||x(t)| between [−2,2][-2, 2]. Give your code and embed the plot.



Solution:

% Solution to Example Problem 2.7.1b
t = -2:0.001:2;
x = exp(-3*t).*sin(10*pi*t).*heaviside(t);
hp = plot(t,abs(x));
grid on;
xh = xlabel('t');
yh = ylabel('x(t)');
th = title('Plot for Example Problem 2.7.1b');

% make the plot more readable
set(gca, 'FontSize', 12, 'Box', 'off', 'LineWidth', 2);
set(hp, 'linewidth', 2);
set([xh, yh, th], 'FontSize', 12);

set(gcf, 'PaperPositionMode', 'auto');
print -dpng example_2_7_1.png



	Line 2

	
Create time slices from -2 seconds to 2 seconds in increments of 1 millisecond


	Line 3

	
Compute the signal value at each time slice


	Line 4

	
Plot the signal






2.7.2 

Find a solution to the differential equation dydt(t)+9y(t)=e−t
  \frac{dy}{dt}(t) + 9y(t) = e^{-t}
   for t≥0t \geq 0, when y(0)=1y(0) = 1.

Solution: The homogeneous equation is dyhdt(t)+9yh(t)=0
  \frac{dy_h}{dt}(t) + 9y_h(t) = 0
   with initial condition yh(0)=1y_h(0) = 1. Its solution is of the form yh(t)=Ce−9t
  y_h(t) = C\, e^{-9t} 
   for constant CC. Using the initial condition yh(0)=Ce−0=C=1
  y_h(0) = C\, e^{-0} = C = 1
   gives yh(t)=e−9t
  y_h(t) = e^{-9t} 
   The particular solution is of the form yp(t)=C1e−t+C2e−9t
  y_p(t) = C_1 e^{-t} + C_2 e^{-9t}
   Substitution and equating coefficients gives C1=18C_1 = \frac{1}{8} and C2=−18C_2 = -\frac{1}{8}. The total solution is the sum of the two solutions or y(t)=18e−t−18e−9t+e−9t=18e−t+78e−9t
  y(t) = \frac{1}{8} e^{-t} - \frac{1}{8} e^{-9t} + e^{-9t} = \frac{1}{8} e^{-t} + \frac{7}{8} e^{-9t}
  



2.7.3 

Find a solution to the differential equation dydt(t)+9y(t)=e−t
  \frac{dy}{dt}(t) + 9y(t) = e^{-t}
   for t≥0t \geq 0, when y(0)=1y(0) = 1.

Solution: The homogeneous equation is dyhdt(t)+9yh(t)=0
  \frac{dy_h}{dt}(t) + 9y_h(t) = 0
   with initial condition yh(0)=1y_h(0) = 1. Its solution is of the form yh(t)=Ce−9t
  y_h(t) = C\, e^{-9t} 
   for constant CC. Using the initial condition yh(0)=Ce−0=C=1
  y_h(0) = C\, e^{-0} = C = 1
   gives yh(t)=e−9t
  y_h(t) = e^{-9t} 
   The particular solution is of the form yp(t)=C1e−t+C2e−9t
  y_p(t) = C_1 e^{-t} + C_2 e^{-9t}
   Substitution and equating coefficients gives C1=18C_1 = \frac{1}{8} and C2=−18C_2 = -\frac{1}{8}. The total solution is the sum of the two solutions or y(t)=18e−t−18e−9t+e−9t=18e−t+78e−9t
  y(t) = \frac{1}{8} e^{-t} - \frac{1}{8} e^{-9t} + e^{-9t} = \frac{1}{8} e^{-t} + \frac{7}{8} e^{-9t}
  



2.7.4 

Compute the integral ∫−∞∞e−t2δ(t−10)dt
    \int\limits_{-\infty}^{\infty} e^{-t^2} \, \delta(t-10)\; dt
     where δ(t)\delta(t) is the delta function.

Solution:

Using the sifting property of the delta function ∫abf(t)δ(t−t0)dt=f(t0)
  \int\limits_{a}^{b} f(t) \, \delta(t-t_0)\; dt = f(t_0)
   for a<t0<ba < t_0 < b, we get ∫−∞∞e−t2δ(t−10)dt=e−100≈0
  \int\limits_{-\infty}^{\infty} e^{-t^2} \, \delta(t-10)\; dt = e^{-100} \approx 0
  






3 Discrete-Time Signals

Recall from the previous chapter that a discrete-time (DT) signal is modeled as a function f:ℤ→ℂf: \mathbb{Z} \rightarrow \mathbb{C}. We will write these as x[n]x[n], y[n]y[n], etc. Note nn is dimensionless. These are graphically plotted as stem or “lollipop” plots, as demonstrated in Chapter 2.

Since the domain ℤ\mathbb{Z} is usually interpreted as a time index, we will still call these time-domain signals. In the time-domain, when the co-domain is ℝ\mathbb{R} we call these real DT signals. Unlike with CT signals there are no physical limitations requiring DT signals to be real, since in discrete hardware, a value at a given index can be a complex number, i.e. just a pair of numbers. However it is computationally advantageous to restrict ourselves to real arithmetic and such signals are often converted to or from CT signals, which do have to be real. For this reason, real DT signals dominate in models.


3.1 Primitive Models

As with CT signals, we mathematically model DT signals by combining elementary/primitive functions, for example:


	polynomials: x[n]=nx[n] = n, x[n]=n2x[n] = n^2, etc.

	transendental functions: x[n]=enx[n] = e^n, x[n]=sin(n)x[n] = \sin(n), x[n]=cos(n)x[n] = \cos(n), etc.

	piecewise functions, e.g. x[n]={f1[n]n<0f2[n]n≥0
x[n] = \left\{  \begin{array}{cl}
f_1[n] & n < 0\\
f_2[n] & n \geq 0\\
\end{array}\right.






Definition




The DT counterpart of the CT step function is the DT Unit Step, u[n]u[n]: u[n]={0n<01n≥0u[n] = \left\{  \begin{array}{cl}
    0 & n < 0\\
    1 & n \geq 0\\
  \end{array}\right. Note, there are not continuity issues at n=0n=0 as DT functions have discrete domains.







Example




A sampled signal modeling the air pressure of a specific tone, sampled at 8kHz, might be x[n]=sin(2π(261.6)18000n)x[n] = \sin\left(2\pi (261.6) \tfrac{1}{8000} n\right) Such DT signals are commonly used in digital music generation, storage, and playback.







Example




Similarly, the sampled chord "G", an additive mixture of tones at G, B, and D and might be modeled as x[n]=sin(2π(392)18000n)+sin(2π(494)18000n)+sin(2π(293)18000n)x[n] = \sin\left(2\pi (392) \tfrac{1}{8000} n\right) + \sin\left(2\pi (494) \tfrac{1}{8000} n\right) + \sin\left(2\pi (293) \tfrac{1}{8000} n\right) again sampled at 8kHz. This example shows we can use addition to build-up signals to approximate real signals of interest.







3.2 Basic Transformations

Similar to CT signals, we can also apply transformations to DT signals to increase their modeling flexibility.


	magnitude scaling x2[n]=ax1[n]x_2[n] = a x_1[n] for a∈ℝa \in \mathbb{R}.


	time differences x2[n]=x1[n]−x1[n−1]x_2[n] = x_1[n] - x_1[n-1]


	running sums x2[n]=∑m=−∞nx1[m]x_2[n] = \sum\limits_{m = -\infty}^{n} x_1[m]


	sums y[n]=∑ixi[n]y[n] = \sum\limits_{i} x_i[n] an important example we will see is the DT Fourier series.


	multiplication (modulation) y[n]=x1[n]x2[n]y[n] = x_1[n] x_2[n]


	time index shift x2[n]=x1[n+m]x_2[n] = x_1[n+m]


	if m<0m < 0 it is called a delay


	if m>0m > 0 it is called an advance





	time reversal x2[n]=x1[−n]x_2[n] = x_1[-n]


	decimation y[n]=x[mn]y[n] = x[m n] for m∈ℤ+m \in \mathbb{Z}^+.


	e.g. for m=2m=2 only keep every other sample


	e.g. for m=3m=3 only keep every third sample


	etc.





	interpolation y[n]={x[nm]n=0,±m,,±2m⋯0elsey[n] = \left\{  \begin{array}{cl}
x\left[ \frac{n}{m}\right] & n = 0\; , \; \pm m, , \; \pm 2m \cdots\\
0 & \mbox{else}
\end{array}\right. When m=2m = 2 this inserts a zero sample between every sample of the signal.






3.3 Characterization of Signals

There are a few basic ways of characterizing DT signals.



Definition




A DT signal is causal if x[n]=0x[n] = 0 ∀n<0\forall n < 0.







Definition




A DT signal is anti-causal or acausal if x[n]=0x[n] = 0 ∀n≥0\forall n \geq 0.





A DT signal can be written as the sum of a causal and anti-causal signal.

A DT signal is periodic if x[n]=x[n+N]∀nx[n] = x[n + N] \; \forall n for a fixed period N∈ℤN \in \mathbb{Z}.

A DT signal is even if x[n]=x[−n]∀nx[n] = x[-n] \; \forall n.

A DT signal is odd if x[n]=−x[−n]∀nx[n] = -x[-n] \; \forall n.

Any DT signal can be written in terms of an even and odd component x[n]=xe[n]+xo[n]x[n] = x_e[n] + x_o[n] where xe[n]=12{x[n]+x[−n]}xo[n]=12{x[n]−x[−n]}\begin{array}{ll}
x_e[n] &= \frac{1}{2}\left\{x[n] + x[-n]\right\} \\
& \\
x_o[n] &= \frac{1}{2}\left\{x[n] - x[-n]\right\}
\end{array}

Analogous to CT signals, the energy of a DT signal is Ex=limN→∞∑−NN|x[n]|2.E_x = \lim_{N\rightarrow\infty} \sum\limits_{-N}^N \lvert x[n]\rvert^2 \; .

And the power of a DT signal is the energy averaged over an interval as that interval tends to infinity.

Px=limN→∞12N+1∑−NN|x[n]|2.P_x = \lim_{N\rightarrow\infty} \frac{1}{2N+1} \sum\limits_{-N}^N \lvert x[n]\rvert^2 \; .

DT Signals with finite, non-zero energy and zero power are called energy signals. DT Signals with finite, non-zero power (and by implication infinite energy) are called power signals. These categories are non-exclusive, some signals are neither energy or power signals.



3.4 DT Unit Impulse Function

In DT the unit impulse function, denoted δ[n]\delta[n] is defined as δ[n]={1n=00else\delta[n] = \left\{
\begin{array}{ll}
  1 & n = 0\\
  0 & \text{else}
\end{array}
\right. Note this definition is straightforward compared to the CT impulse as there are no continuity issues and it is not defined in terms of a distribution. It is typically drawn as






[image: a plot of the discrete-time delta function.]



Figure 3.1: Plot of discrete-time delta function.








Some useful properties of the DT impulse function are:


	Energy is 1: ∑n=−∞∞δ[n]=1\sum\limits_{n=-\infty}^{\infty} \delta[n] = 1


	Sampling: x[n]δ[n−n0]=x[n0]δ[n−n0]x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]


	Sifting: ∑n=−∞∞x[n]δ[n−n0]=x[n0]\sum\limits_{n=-\infty}^{\infty} x[n]\delta[n-n_0] = x[n_0]




The impulse can be defined in terms of the step: δ[n]=u[n]−u[n−1]\delta[n] = u[n] - u[n-1] and vice-versa u[n]=∑m=−∞nδ[m]u[n] = \sum\limits_{m=-\infty}^{n} \delta[m] or u[n]=∑k=0∞δ[n−k]u[n] = \sum\limits_{k=0}^{\infty} \delta[n-k]



3.5 DT Complex Exponential

The DT Complex Exponential is defined in a similar fashion the the CT version, but with some important differences. The general DT complex exponential is given by the expression: x[n]=Ceβnx[n] = Ce^{\beta n} where in general C∈ℂC \in \mathbb{C} and β∈ℂ\beta \in \mathbb{C}. It is sometimes convenient (for reasons we will see later) to write this as x[n]=Cαnx[n] = C \alpha^n where α=ejθ\alpha = e^{j\theta} is a complex number α=cos(θ)+jsin(θ)\alpha = \cos(\theta) + j\sin(\theta).

We now examine several special cases.


3.5.1 DT Complex Exponential: real case

Let CC and α\alpha be real, then there are four intervals of interest:


	α>1\alpha > 1


	0<α<10 < \alpha < 1


	−1<α<0-1 < \alpha < 0


	α<−1\alpha < -1




Each of these are shown in Figure 3.2.






[image: Example plots of real exponential signals.]



Figure 3.2: DT Complex Exponential: real case, four intervals of interest.










3.5.2 DT Complex Exponential: sinusoidal case

Let C=1C = 1. When β\beta is purely imaginary, β=jω0\beta = j\omega_0 x[n]=ejω0nx[n] = e^{j\omega_0 n}

As in CT, by Euler’s identity: ejω0n=cos(ω0n)+jsin(ω0n)e^{j\omega_0 n} = \cos(\omega_0 n) + j\sin(\omega_0 n) and ℜ(x[n])=cos(ω0n)=12(ejω0n+e−jω0n)\Re(x[n]) = \cos(\omega_0 n) = \frac{1}{2}\left( e^{j\omega_0 n} + e^{-j\omega_0 n} \right) ℑ(x[n])=sin(ω0n)=12j(ejω0n−e−jω0n)\Im(x[n]) = \sin(\omega_0 n) = \frac{1}{2j}\left( e^{j\omega_0 n} - e^{-j\omega_0 n} \right)

The energy and power are the same as for the CT complex sinusoid: Ex=∞E_x = \infty and Px=1P_x = 1.



3.5.3 DT Complex Exponential: sinusoidal case with phase shift

The general DT sinusoid is

x[n]=Acos(ω0n+ϕ)x[n] = A\cos(\omega_0 n + \phi)


	AA is called the amplitude


	ϕ\phi is called the phase shift


	ω0\omega_0 is now in radians (assuming nn is dimensionless)








[image: Example plots of DT Complex Exponential: sinusoidal case with phase shift]








For CT sinusoids as ω0\omega_0 increases the signal oscillates faster and faster. However for DT sinusoids there is a "fastest" oscillation.

ejω0n|ω0=π=ejπn=(−1)ne^{j\omega_0 n}\rvert_{\omega_0 = \pi} = e^{j\pi n} = (-1)^n





[image: Example plots of DT Complex Exponential: sinusoidal case with maximum frequency.]










3.5.4 Properties of DT complex sinusoid

If we consider two frequencies: ω0\omega_0 and ω0+2π\omega_0+2\pi. In the first case: x[n]=ejω0nx[n] = e^{j\omega_0 n} In the second case: x[n]=ej(ω0+2π)n=ej2πn⏟always 1ejω0n=ejω0n\begin{array}{ll}
x[n] &= e^{j(\omega_0+2\pi) n} \\
&= \underbrace{e^{j2\pi n}}_{\text{always 1}}\; e^{j\omega_0 n} \\
&= e^{j\omega_0 n}
\end{array}

Thus the two are the same signal. This has important implications later in the course.

Another difference between CT and DT complex sinusoids is periodicity. Recall for a DT signal to be periodic with period NN x[n]=x[n+N]∀nx[n] = x[n+N] \; \forall n Substituting the complex sinusoid ejω0n=ejω0(n+N)=ejω0nejω0Ne^{j\omega_0 n} = e^{j\omega_0 (n+N)} = e^{j\omega_0 n}e^{j\omega_0 N} requires ejω0N=1e^{j\omega_0 N} = 1, which implies ω0N\omega_0 N is a multiple of 2π2\pi: ω0N=2πmm=±1,±2,⋯\omega_0 N = 2\pi m \;\;\; m = \pm 1, \pm 2, \cdots or equivalently |ω0|2π=mN\frac{|\omega_0|}{2\pi} = \frac{m}{N} thus ω0\omega_0 must be a rational multiple of π\pi.

Two DT complex sinusoids are harmonics of one another is both are periodic in NN, i.e when

xk(t)=ejk2πNnfork=0,±1,±2,⋯x_k(t) = e^{jk\frac{2\pi}{N} n} \; \text{for} \; k = 0, \pm 1, \pm 2, \cdots

This implies there are only NN distinct harmonics in DT.



3.5.5 DT Complex Exponential: general case

In the general case we get a sinusoid signal modulated by an exponential. Let C=AejϕC = Ae^{j\phi} and β=r+jω0\beta = r + j\omega_0, then x[n]=Ceβn=Aejϕe(r+jω0)nx[n] = C e^{\beta n} =  Ae^{j\phi} e^{(r+j\omega_0)n} Expanding the terms and using Euler’s identity gives:

x[n]=Aerncos(ω0n+ϕ)⏟ℜpart+jAernsin(ω0n+ϕ)⏟ℑpartx[n] = \underbrace{Ae^{rn}\cos(\omega_0 n+\phi)}_{\Re \text{part}} + j \underbrace{Ae^{rn}\sin(\omega_0 n+\phi)}_{\Im \text{part}} Each part is a real sinusoid whose amplitude is modulated by a real exponential.

The visualization of the general case is to view the signal x[n]x[n] as a vector rotating through fixed angles in the complex plane.




[image: A figure visualizing the DT complex sinusoid at a specific point in time.]



Figure 3.3: The DT complex sinusoid at a specific point in time.









4 CT Systems as Linear Constant Coefficient Differential Equations

Recall a system is a transformation of signals, turning the input signal into the output signal. While this might seem like a new concept to you, you already know something about them from your differential equations course, i.e. MATH 2214 and your circuits course.

For example, consider the following circuit:




[image: a circuit, refer to caption]



Figure 4.1: A series RC circuit connected to a battery by a switch.




where the switch moves position at t=0t = 0. The governing equation for the circuit when t<0t < 0 is dVcdt(t)+1RCVc(t)=0\frac{dV_c}{dt}(t) + \frac{1}{RC}V_c(t) = 0 a homogeneous differential equation of first-order. From a DC analysis, the initial condition on the capacitor voltage is VC(0−)=0V_C(0^-) = 0, so there is no current flowing prior to t=0t = 0 and the solution is VC(t)=0V_C(t) = 0 for t<0t < 0.

After the switch is thrown, the governing equation for the circuit when t≥0t \geq 0 is dVcdt(t)+1RCVc(t)=1RC\frac{dV_c}{dt}(t) + \frac{1}{RC}V_c(t) = \frac{1}{RC} Since the voltage across the capacitor cannot change instantaneously VC(0−)=VC(0+)=0V_C(0^-) = V_C(0^+) = 0, giving the auxillary condition necessary to solve this equation, which has the form VC(t)=A+Be−1RCtV_C(t) = A + Be^{-\frac{1}{RC}t} Using the auxillary condition we find VC(0)=A+Be−1RC0=A+B=0 which implies B=−AV_C(0) = A + Be^{-\frac{1}{RC}0} = A + B = 0 \mbox{ which implies } B = -A Subsitution back into the differential equation and equating the coefficients gives A=1A = 1. Thus the voltage for t≥0t \geq 0 is VC(t)=1−e−1RCtV_C(t) = 1 - e^{-\frac{1}{RC}t}

Suppose we consider the voltage after the switch as the input signal x(t)x(t) to the system composed of the series RC. As we have seen previously a mathematical model of the switch is the unit step x(t)=u(t)x(t) = u(t). Suppose we consider the capacitor voltage at the output of the system, so that y(t)=VC(t)y(t) = V_C(t). Then we can consider the system to be represented by the linear, constant-coefficient differential equation dydt(t)+1RCy(t)=1RCx(t)\frac{dy}{dt}(t) + \frac{1}{RC}y(t) = \frac{1}{RC}x(t) where x(t)=u(t)x(t) = u(t) and the solution y(t)y(t) is the step response y(t)=(1−e−1RCt)u(t)y(t) = \left(1 - e^{-\frac{1}{RC}t}\right)u(t)

As we will see later this representation of systems is central to the course, so we take some time here to review the solution of such equations.


4.1 Solving Linear, Constant Coefficient Differential Equations

A linear, constant coefficient (LCC) differential equation is of the form a0y+a1dydt+a2d2ydt2+⋯+aNdNydtN=b0x+b1dxdt+b2d2xdt2+⋯+bMdMxdtMa_0\, y + a_1\, \frac{dy}{dt} + a_2\, \frac{d^2y}{dt^2} + \cdots + a_N\, \frac{d^Ny}{dt^N}  = b_0\, x + b_1\, \frac{dx}{dt} + b_2\, \frac{d^2x}{dt^2} + \cdots + b_M\, \frac{d^Mx}{dt^M} which can be written compactly as ∑k=0Nakdkydtk=∑k=0Mbkdkxdtk\sum\limits_{k = 0}^{N} a_k\, \frac{d^ky}{dt^k} = \sum\limits_{k = 0}^{M} b_k\, \frac{d^kx}{dt^k}

It is helpful to clean up this notation using the derivative operator Dn=dndtnD^n = \frac{d^n}{dt^n}. For example D2y=d2ydt2D^2y = \frac{d^2y}{dt^2} and D0y=yD^0 y= y. To give for form as ∑k=0NakDky=∑k=0MbkDkx\sum\limits_{k = 0}^{N} a_k\, D^k y = \sum\limits_{k = 0}^{M} b_k\, D^k x

We can factor out the derivative operators a0y+a1Dy+a2D2y+⋯+aNDNy=b0x+b1Dx+b2D2x+⋯+bMDMxa_0y + a_1Dy + a_2D^2y + \cdots + a_ND^Ny  = b_0\, x + b_1\, Dx + b_2\, D^2x + \cdots + b_M\, D^M x (a0+a1D+a2D2+⋯+aNDN)⏟Polynomial in D,Q(D)y=(b0+b1D+b2D2+⋯+bMDM)⏟Polynomial in D,P(D)x\underbrace{\left(a_0 + a_1D + a_2D^2 + \cdots + a_ND^N\right)}_{\text{Polynomial in } D, Q(D)} y = \underbrace{\left(b_0 + b_1 D + b_2 D^2 + \cdots + b_M D^M\right)}_{\text{Polynomial in } D, P(D)} x to give:

Q(D)y=P(D)xQ(D)y = P(D)x You learned how to solve these in differential equations (Math 2214) as y(t)=yh(t)+yp(t)y(t) = y_\text{h}(t) + y_\text{p}(t)

The term yh(t)y_\text{h}(t) is the solution of the homogeneous equation Q(D)y=0Q(D)y = 0 Given the N−1N-1 auxillary conditions y(t0)=y0y(t_0) = y_0, Dy(t0)=y1Dy(t_0) = y_1, D2y(t0)=y2D^2y(t_0) = y_2, up to DN−1y(t0)=yN−1D^{N-1}y(t_0) = y_{N-1}.

The term yp(t)y_\text{p}(t) is the solution of the particular equation Q(D)y=P(D)xQ(D)y = P(D)x for a given x(t)x(t).

Rather than recapitulate the solution to yh(t)y_\text{h}(t) and yp(t)y_\text{p}(t) in the general case we focus on the homogeneous solution yh(t)y_\text{h}(t) only. The reason is that we will use the homogeneous solution to find the impulse response below and take a different approach to solving the general case for an arbitrary input using the impulse response and convolution (next week).

To solve the homogenous system:

Step 1: Find the characteristic equation by replacing the derivative operators by powers of an arbitrary complex variable ss. Q(D)=a0+a1D+a2D2+⋯+aNDNQ(D) = a_0 + a_1D + a_2D^2 + \cdots + a_ND^N becomes Q(s)=a0+a1s+a2s2+⋯+aNsNQ(s) = a_0 + a_1s + a_2s^2 + \cdots + a_Ns^N a polynomial in ss with NN roots sis_i for i=1,2,⋯,Ni = 1, 2, \cdots, N such that (s−s1)(s−s2)⋯(s−sN)=0(s - s_1)(s-s_2)\cdots(s-s_N) = 0

Step 2: Select the form of the solution, a sum of terms corresponding to the roots of the characteristic equation.


	For a real root s1∈ℝs_1\in \mathbb{R} the term is of the form C1es1t.C_1 e^{s_1 t}.


	For a pair of complex roots (they will always be in pairs) s1,2=a±jbs_{1,2} = a \pm jb the term is of the form C1es1t+C2es2t=eat(C3cos(bt)+C4sin(bt))=C5eatcos(bt+C6).C_1 e^{s_1 t} + C_2 e^{s_2 t} = e^{a t}\left(C_3\cos(bt) + C_4\sin(bt)\right) = C_5 e^{a t}\cos(bt + C_6).


	For a repeated root s1s_1, repeated rr times, the term is of the form es1t(C0+C1t+⋯+Cr−1tr−1).e^{s_1 t} (C_0 + C_1 t + \cdots + C_{r-1} t^{r-1}).




Step 3: Solve for the unknown constants in the solution using the auxillary conditions.

We now examine two common special cases, when N=1N=1 (first-order) and when N=2N=2 (second-order).


4.1.1 First-Order Homogeneous LCCDE

Consider the first order homogeneous differential equation dydt(t)+ay(t)=0 for a∈ℝ\frac{dy}{dt}(t) + ay(t) = 0 \mbox{ for } a \in \mathbb{R} The characteristic equation is given by s+a=0s + a = 0 which has a single root s1=−as_1 = -a. The solution is of the form y(t)=Ces1t=Ce−aty(t) = Ce^{s_1 t} = Ce^{-a t} where the constant CC is found using the auxillary condition y(t0)=y0y(t_0) = y_0.



Example




Consider the homogeneous equation dydt(t)+3y(t)=0 where y(0)=10\frac{dy}{dt}(t) + 3y(t) = 0 \mbox{ where } y(0) = 10 The solution is y(t)=Ce−3ty(t) = Ce^{-3 t} To find CC we use the auxillary condition y(0)=Ce−3⋅0=C=10y(0) = Ce^{-3 \cdot 0} = C = 10 and the final solution is y(t)=10e−3ty(t) = 10e^{-3 t}







4.1.2 Second-Order Homogeneous LCCDE

Consider the second-order homogeneous differential equation d2ydt2(t)+adydt(t)+by(t)=0 for a,b∈ℝ\frac{d^2y}{dt^2}(t) + a\frac{dy}{dt}(t) + by(t) = 0 \mbox{ for } a,b \in \mathbb{R} The characteristic equation is given by s2+as+b=0s^2 + as + b = 0

Let’s look at several examples to illustrate the functional forms.



Example




d2ydt2(t)+7dydt(t)+10y(t)=0\frac{d^2y}{dt^2}(t) + 7\frac{dy}{dt}(t) + 10y(t) = 0 The characteristic equation is given by s2+7s+10=0s^2 + 7s + 10 = 0 which has roots s1=−2s_1 = -2 and s2=−5s_2 = -5. Thus the form of the solution is y(t)=C1e−2t+C2e−5ty(t) = C_1e^{-2t} + C_2e^{-5t}







Example




d2ydt2(t)+2dydt(t)+5y(t)=0\frac{d^2y}{dt^2}(t) + 2\frac{dy}{dt}(t) + 5y(t) = 0 The characteristic equation is given by s2+2s+5=0s^2 + 2s + 5 = 0 which has complex roots s1=−1+j2s_1 = -1+j2 and s1=−1−j2s_1 = -1-j2. Thus the form of the solution is y(t)=e−t(C1cos(2t)+C2sin(2t))y(t) = e^{-t}\left(C_1\cos(2t) + C_2\sin(2t)\right)







Example




d2ydt2(t)+2dydt(t)+y(t)=0\frac{d^2y}{dt^2}(t) + 2\frac{dy}{dt}(t) + y(t) = 0 The characteristic equation is given by s2+2s+1=0s^2 + 2s + 1 = 0 which has a root s1=−1s_1 = -1 repeated r=2r=2 times. Thus the form of the solution is y(t)=e−t(C1+C2t)y(t) = e^{-t}\left(C_1 + C_2t\right)





In each of the above cases the constants, C1C_1 and C2C_2, are found using the auxillary conditions y(t0)y(t_0) and y′(t0)y\prime(t_0).




4.2 Finding the impulse response of a system described by a LCCDE

As we will see next week an important response of a system is the one that corresponds to an impulse input, i.e. the impulse response y(t)=h(t)y(t) = h(t) when x(t)=δ(t)x(t) = \delta(t). Thus we focus here on a recipe for solving LCCDEs for this special case when M≤NM \leq N. We will skip the derivation of why this works.

Our goal is to find the solution to Q(D)y=P(D)xQ(D)y = P(D)x when x(t)=δ(t)x(t)=\delta(t).

Step 1: Rearrange the LCCDE so that aN=1a_N = 1, i.e. divide through by aNa_N to put it into a standard form.

Step 2: Let yh(t)y_h(t) be the homogeneous solution to Q(D)yh=0Q(D)y_h = 0 for auxillary conditions DN−1yh(0+)=1,DN−2yh(0+)=0,etc.yh(0+)=0D^{N-1}y_h(0^+) = 1 \; , \; D^{N-2}y_h(0^+) = 0 \; , \; \text{etc.} \; y_h(0^+) = 0

Step 3: Assume a form for h(t)h(t) given by: h(t)=bNδ(t)⏟=0 unless N=M+[P(D)yh]⏟apply P(D) to yn(t)u(t)h(t) = \underbrace{b_N\delta(t)}_{=0 \text{ unless } N=M} + \underbrace{\left[ P(D)y_h\right]}_{\text{apply } P(D) \text{ to } y_n(t)}u(t)

Recall from above the homogeneous solution depends on the roots of the characteristic equation Q(D)=0Q(D) = 0.


	roots are either real, or


	roots occur in complex conjugate pairs, or


	repeated roots.






Example




Find the impulse response of the LCCDE 2dydt(t)+2y(t)=2x(t)2\frac{dy}{dt}(t) + 2y(t) = 2x(t) In the standard for the LCCDE is dydt(t)+y(t)=x(t)\frac{dy}{dt}(t) + y(t) = x(t) The characteristic equation is given by s+1=0s + 1 = 0 which has a single root s1=−1s_1 = -1. The solution is of the form yh(t)=Ce−ty_h(t) = Ce^{-t} with the special auxillary condition y(0)=1y(0) = 1, so that yh(t)=e−ty_h(t) = e^{-t} Since P(D)=1P(D) = 1 and N=1≠M=0N = 1 \neq M = 0 the impulse response is h(t)=bNδ(t)⏟=0+[P(D)⏟1yh(t)]u(t)=e−tu(t)h(t) = \underbrace{b_N\delta(t)}_{=0} + \left[ \underbrace{P(D)}_{1}y_h(t)\right]u(t) = e^{-t}u(t)







Example




Find the impulse response of the LCCDE dydt(t)+y(t)=dxdt(t)+x(t)\frac{dy}{dt}(t) + y(t) = \frac{dx}{dt}(t) + x(t) It is already in the standard form. The homogeneous solution is the same as in Example 1, yh(t)=e−ty_h(t) = e^{-t} however now M=N=1M = N = 1 with b1=1b_1 = 1 and P(D)=D+1P(D) = D+1. Thus, the impulse response is h(t)=bN⏟=1δ(t)+[P(D)⏟D+1yh(t)]u(t)=δ(t)+{[D+1]e−t}u(t)=δ(t)+[−e−t+e−t]u(t)=δ(t)h(t) = \underbrace{b_N}_{=1}\delta(t) + \left[ \underbrace{P(D)}_{D+1}y_h(t)\right]u(t) = \delta(t) + \left\{[D+1]e^{-t}\right\}u(t) = \delta(t) + [- e^{-t} + e^{-t}]u(t) = \delta(t)







Example




Find the impulse response of the LCCDE d2ydt2(t)+7dydty(t)+10y(t)=x(t)\frac{d^2y}{dt^2}(t) + 7\frac{dy}{dt}y(t) + 10y(t) = x(t) It is already in the standard form. The characteristic equation is given by s2+7s+10=0s^2 + 7s + 10 = 0 which has roots s1=−2s_1 = -2 and s2=−5s_2 = -5. Thus the form of the solution is yh(t)=C1e−2t+C2e−5ty_h(t) = C_1e^{-2t} + C_2e^{-5t} The special auxillary conditions are yh(0)=0y_h(0) = 0 and yh′(0)=1y^\prime_h(0) = 1. Using these conditions yh(0)=C1e−2t+C2e−5t|t=0=C1+C2=0y_h(0) = C_1e^{-2t} + C_2e^{-5t} |_{t = 0} = C_1 + C_2 = 0 yh′(0)=−2C1e−2t−5C2e−5t|t=0=−2C1−5C2=1y^\prime_h(0) = -2C_1e^{-2t} - 5C_2e^{-5t} |_{t = 0} = -2C_1 -5C_2 = 1 Solving for the constants gives C1=13C_1 = \frac{1}{3} and C2=−13C_2 = -\frac{1}{3}. Since P(D)=1P(D) = 1 and N=2≠M=0N = 2 \neq M = 0 the impulse response is h(t)=bNδ(t)⏟=0+[P(D)⏟1yh(t)]u(t)=13e−2tu(t)−13e−5tu(t)h(t) = \underbrace{b_N\delta(t)}_{=0} + \left[ \underbrace{P(D)}_{1}y_h(t)\right]u(t) = \frac{1}{3} e^{-2t}u(t) - \frac{1}{3} e^{-5t}u(t)









5 DT systems as linear constant coefficient difference equations

A difference equation is a relation among combinations of two DT functions and shifted versions of them. Similar to differential equations where the solution is a CT function, the solution to a difference equation is a DT function. For example: y[n+1]+12y[n]=x[n]y[n+1] + \frac{1}{2}y[n] = x[n] is a first order, linear, constant-coefficient difference equation. Given x[n]x[n] the solution is a function y[n]y[n]. We can view this as a representation of a DT system, where x[n]x[n] is the input signal and y[n]y[n] is the output.

There is a parallel theory to differential equations for solving difference equations. However in this lecture we will focus specifically on the iterative solution of linear, constant-coefficient difference equations and the case when the input is a delta function, as this is all we need for this course.


5.1 Definition of linear constant coefficient difference equation

A linear, constant-coefficient, difference equation (LCCDE) comes in one of two forms.


	Delay form. ∑k=0Naky[n−k]=∑k=0Mbkx[n−k]\sum\limits_{k = 0}^N a_k y[n-k] = \sum\limits_{k = 0}^M b_k x[n-k] or a0y[n]+a1y[n−1]+⋯aNy[n−N]=b0x[n]+⋯bMx[n−M]a_0y[n] + a_1y[n-1] + \cdots a_N y[n-N] = b_0 x[n] + \cdots b_Mx[n-M]


	Advance form. Let n→n+Nn\rightarrow n+N, then the delay form becomes ∑k=0Naky[n+N−k]=∑k=0Mbkx[n+N−k]\sum\limits_{k = 0}^N a_k y[n+N-k] = \sum\limits_{k = 0}^M b_k x[n+N-k] or a0y[n+N]+a1y[n+N−1]+⋯aNy[n]=b0x[n+N]+⋯bMx[n+N−M]a_0y[n+N] + a_1y[n+N-1] + \cdots a_N y[n] = b_0 x[n+N] + \cdots b_Mx[n+N-M]




The order of the system is given by NN. The delay and advance forms are equivalent because the equation holds for any nn, and we can move back and forth between them as needed by a constant index-shift.



Example




The delay form is a0y[n]+a1y[n−1]+a2y[n−2]=b0x[n]+b1x[n−1]a_0y[n] + a_1 y[n-1] + a_2 y[n-2] = b_0 x[n] + b_1 x[n-1] Replacing n→n+2n \rightarrow n+2, the advance form is a0y[n+2]+a1y[n+1]+a2y[n]=b0x[n+2]+b1x[n+1]a_0 y[n+2] + a_1 y[n+1] + a_2 y[n] = b_0 x[n+2] + b_1 x[n+1]





It will be convenient to define the operator EmE^m as shifting a DT function by positive mm, i.e. Emx[n]=x[n+m]E^m x[n] = x[n+m], and the operator DmD^m as shifting a DT function by negative mm, i.e. Dmx[n]=x[n−m]D^m x[n] = x[n-m]. These are called the advance and delay operators respectively. Then, the advance form of the difference equation using this operator notation is a0y[n+N]+a1y[n+N−1]+⋯aNy[n]=b0x[n+N]+⋯bMx[n+N−M]a_0y[n+N] + a_1y[n+N-1] + \cdots a_N y[n] = b_0 x[n+N] + \cdots b_Mx[n+N-M] a0ENy+a1EN−1y+⋯aNy=b0ENx+⋯bMEN−Mxa_0 E^Ny + a_1E^{N-1}y + \cdots a_N y = b_0 E^{N}x + \cdots b_M E^{N-M}x Factoring out the advance operators gives (a0EN+a1EN−1+⋯aN)⏟Q(E)y=(b0EN+⋯bMEN−M)⏟P(E)x\underbrace{\left(a_0E^N + a_1E^{N-1} + \cdots a_N\right)}_{Q(E)} y = \underbrace{\left(b_0 E^{N} + \cdots b_M E^{N-M}\right)}_{P(E)} x or Q(E)y[n]=P(E)x[n]Q(E)y[n] = P(E)x[n]

Similarly, the delay form of the difference equation using this operator notation is a0y[n]+a1y[n−1]+⋯aNy[n−N]=b0x[n]+⋯bMx[n−M]a_0y[n] + a_1y[n-1] + \cdots a_N y[n-N] = b_0 x[n] + \cdots b_Mx[n-M] a0y[n]+a1Dy+⋯aNDNy=b0x+⋯bMDMxa_0y[n] + a_1 Dy + \cdots a_N D^N y = b_0 x + \cdots b_MD^M x Note: The DT delay operator DD is similar, but not identical to the derivative operator DD in CT.



Example




Consider the difference equation 3y[n+1]+4y[n]+5y[n−1]=2x[n+1]3y[n+1] + 4y[n] + 5y[n-1] = 2x[n+1] The advance form would be: 3y[n+2]+4y[n+1]+5y[n]=2x[n+2]3y[n+2] + 4y[n+1] + 5y[n] = 2x[n+2] or using the advance operator (3E2+4E+5)y=2E2x\left(3E^2 + 4E + 5\right)y = 2E^2x with Q(E)=3E2+4E+5Q(E) = 3E^2 + 4E + 5 and P(E)=2E2P(E) = 2E^2.

The delay form would be: 3y[n]+4y[n−1]+5y[n−2]=2x[n]3y[n] + 4y[n-1] + 5y[n-2] = 2x[n] or using the delay operator (5D2+4D+3)y=2x\left(5D^2 + 4D + 3\right)y = 2x with Q(D)=5D2+4D+3Q(D) = 5D^2 + 4D + 3 and P(D)=2P(D) = 2.







5.2 Iterative solution of LCCDEs

Difference equations are different (pun!) from differential equations in that they can be solved by manually running the equation forward using previous values of the output and current and previous values of the input, given some initial conditions. This is called an iterative solution for this reason.

To perform an iterative solution we need the difference equation in delay form a0y[n]+a1y[n−1]+⋯aNy[n−N]=b0x[n]+⋯bMx[n−M]a_0y[n] + a_1y[n-1] + \cdots a_N y[n-N] = b_0 x[n] + \cdots b_Mx[n-M] We then solve for the current output y[n]y[n] y[n]=−(a1a0y[n−1]+⋯aNa0y[n−N])+b0a0x[n]+⋯bMa0x[n−M]y[n] =  - \left(\frac{a_1}{a_0}y[n-1] + \cdots \frac{a_N}{a_0} y[n-N]\right) + \frac{b_0}{a_0} x[n] + \cdots \frac{b_M}{a_0}x[n-M]

Now lets examine what this expression says in words. To compute the current output y[n]y[n] we need the value of the previous N−1N-1 outputs, the value of the current input x[n]x[n] and M−1M-1 previous inputs (and the coefficients). Then we can compute the next output y[n+1]y[n+1] by adding the previous computation result for y[n]y[n] to our list of things to remember, and forgetting one previous value of yy. This can continue as long as we like.



Example




Consider the first-order difference equation y[n+1]+y[n]=x[n+1]y[n+1] + y[n] = x[n+1] where y[−1]=1y[-1] = 1 and x[n]=u[n]x[n] = u[n]. We first convert this to delay form y[n]=−y[n−1]+x[n].y[n] = -y[n-1] + x[n]\; . Then we can compute y[0]y[0] as y[0]=−y[−1]+x[0]=−1+1=0y[0] = -y[-1] + x[0] = -1 + 1 = 0 and continuing

y[1]=−y[0]+x[1]=0+1=1y[2]=−y[1]+x[2]=−1+1=0y[3]=−y[2]+x[3]=0+1=1etc.\begin{align*}
  y[1] &= -y[0] + x[1] = 0 + 1 = 1\\
  y[2] &= -y[1] + x[2] = -1 + 1 = 0\\
  y[3] &= -y[2] + x[3] = 0 + 1 = 1\\
  \mbox{etc.} &
\end{align*}
We can see that this will continue to give the alternating sequence 1,0,1,0,1,⋯1,0,1,0,1,\cdots.







5.3 Solution of the homogeneous LCCDE

Note the iterative solution does not give us (directly) and analytical expression for the output at arbitrary nn. We have to start at the initial conditions and compute our way up to nn. We now consider an analytical solution when the input is zero, the solution to the homogeneous difference equation Q(E)y=a0y[n+N]+a1y[n+N−1]+⋯aNy[n]=0.Q(E)\, y = a_0y[n+N] + a_1y[n+N-1] + \cdots a_N y[n] = 0 \; . given NN sequential auxiliary conditions on yy.

Similar to differential equations, the homogeneous solution depends on the roots of the characteristic equation Q(E)=0Q(E)=0 whose roots are either real or occur in complex conjugate pairs. Let λi\lambda_i be the ii-th root of Q(E)=0Q(E) = 0, then the solution is of the form y[n]=∑i=1NCiλiny[n] = \sum\limits_{i=1}^N C_i \lambda_i^{n} where the parameters CiC_i are determined from the auxiliary conditions.

For a real system (when the coefficients of the difference equation are real) and when the roots are complex λ1,2=|λ|e±jβ\lambda_{1,2} = |\lambda|e^{\pm j\beta}, it is cleaner to assume a form for those terms as y[n]=C|λ|ncos(βn+θ)y[n] = C |\lambda|^n\cos(\beta n + \theta) for constants CC and θ\theta.



Example




Find the solution to the first-order homogeneous LCCDE y[n+1]+12y[n]=0 with y[0]=5.y[n+1] + \frac{1}{2}y[n] = 0 \mbox{ with } y[0] = 5 \; . Note Q(E)=E+12Q(E) = E + \frac{1}{2} has a single root λ1=−12\lambda_1 = -\frac{1}{2}. Thus the solution is of the form y[n]=C(−12)ny[n] = C\left( -\frac{1}{2}\right)^n where the parameter CC is found using y[0]=C=5y[0] = C = 5 to give the final solution y[n]=5(−12)ny[n] = 5\left( -\frac{1}{2}\right)^n







Example




Find the solution to the second-order homogeneous LCCDE y[n+2]+y[n+1]+12y[n]=0 with y[0]=1 and y[1]=0.y[n+2] + y[n+1] + \frac{1}{2}y[n] = 0 \mbox{ with } y[0] = 1 \mbox{ and } y[1] = 0\; . Note Q(E)=E2+E+12Q(E) = E^2 + E + \frac{1}{2} has a pair of complex roots λ1,2=−12±j12\lambda_{1,2} = -\frac{1}{2} \pm j\frac{1}{2}. Thus the solution is of the form y[n]=C|12|ncos(3π4n+θ)y[n] = C \left|\frac{1}{\sqrt{2}}\right|^n\cos\left(\frac{3\pi}{4} n + \theta\right) where the parameters are found using y[0]=Ccos(θ)=1y[0] = C\cos\left(\theta\right) = 1 y[1]=C12cos(3π4+θ)=0y[1] = C\frac{1}{\sqrt{2}}\cos\left(\frac{3\pi}{4} + \theta\right) = 0 This is true when C=2 and θ=−π4+2πmC = \sqrt{2} \mbox{ and } \theta = -\frac{\pi}{4} + 2\pi m for any m∈ℤm\in \mathbb{Z} since cos\cos is periodic in 2π2\pi. A final solution is then y[n]=2|12|ncos(3π4n−π4)y[n] = \sqrt{2} \left|\frac{1}{\sqrt{2}}\right|^n\cos\left(\frac{3\pi}{4} n - \frac{\pi}{4}\right)





See the appendix for a general technique to solve for these constants.



5.4 Impulse response from LCCDE

Today our goal is to find the solution to Q(E)y=P(E)xQ(E)y=P(E)x when x[n]=δ[n]x[n] = \delta[n] assuming y[n]=0y[n] = 0 for n<0n < 0, giving the impulse response y[n]=h[n]y[n] = h[n]. We skip the derivation here and just give a procedure.

Step 1: Let yhy_h be the homogeneous solution to Q(E)yh=0Q(E)y_h=0 for n>Nn > N.

Step 2: Assume a form for h[n]h[n] given by h[n]=bNaNδ[n]+yh[n]u[n]h[n] = \frac{b_N}{a_N}\delta[n] + y_h[n]u[n]

Step 3: Using the iterative procedure above find the NN auxiliary conditions we need by,


	first, rewrite the equation in delay form and solve for y[n]y[n],


	then let x[n]=δ[n]x[n] = \delta[n] and manually compute h[0]h[0] assuming h[n]=0h[n] = 0 for n<0n < 0,


	repeating the previous step for h[1]h[1], continuing up to h[N−1]h[N-1].




Step 4: Using the auxillary conditions in step 3, solve for the constants in the solution h[n]h[n] from step 2.



Example




Find the impulse response of the system given by y[n+2]−14y[n+1]−18y[n]=2x[n+1]y[n+2] -\frac{1}{4}y[n+1] -\frac{1}{8}y[n]= 2x[n+1]

For step 1 we solve the equation yh[n+2]−14yh[n+1]−18yh[n]=0y_h[n+2] -\frac{1}{4}y_h[n+1] -\frac{1}{8}y_h[n] = 0 which is of the form yh[n]=C1(−14)n+C2(12)ny_h[n] = C_1 \left( -\frac{1}{4}\right)^n + C_2 \left( \frac{1}{2}\right)^n since the roots of Q(E)=E2−14E−18Q(E) = E^2 - \frac{1}{4}E - \frac{1}{8} are −14-\frac{1}{4} and 12\frac{1}{2}.

For step 3, we find the auxiliary conditions needed to find C1C_1 and C2C_2 by rewriting the original equation in delay form and solving for y[0]y[0] and y[1]y[1] when x[n]=δ[n]x[n] = \delta[n]. y[n]=14y[n−1]+18y[n−2]+2x[n−1]y[n] = \frac{1}{4}y[n-1] + \frac{1}{8}y[n-2] + 2x[n-1] Let x[n]=δ[n]x[n] = \delta[n] and manually compute y[0]y[0] assuming y[n]=0y[n] = 0 for n<0n < 0 y[0]=14y[0−1]⏟0+18y[0−2]⏟0+2δ[0−1]⏟0=0y[0] = \frac{1}{4}\underbrace{y[0-1]}_{0} + \frac{1}{8}\underbrace{y[0-2]}_{0} + 2\underbrace{\delta[0-1]}_{0} = 0 Repeat for y[1]y[1] y[1]=14y[1−1]⏟0+18y[1−2]⏟0+2δ[1−1]⏟1=2y[1] = \frac{1}{4}\underbrace{y[1-1]}_{0} + \frac{1}{8}\underbrace{y[1-2]}_{0} + 2\underbrace{\delta[1-1]}_{1} = 2 Now we find the constants using step 4 h[0]=C1+C2=0h[0] = C_1  + C_2  = 0 h[1]=C1(−14)+C2(12)=2h[1] = C_1 \left( -\frac{1}{4}\right) + C_2 \left( \frac{1}{2}\right) = 2 which gives C1=−83C_1 = -\frac{8}{3} and C2=83C_2 = \frac{8}{3}. Thus the final impulse response is h[n]=bNaNδ[n]+yh[n]u[n]=−83(−14)nu[n]+83(12)nu[n]h[n] = \frac{b_N}{a_N}\delta[n] + y_h[n]u[n] = -\frac{8}{3}\left( -\frac{1}{4}\right)^nu[n] + \frac{8}{3}\left( \frac{1}{2}\right)^n u[n] since bN=0b_N = 0.





Note we can confirm our closed-form result in the previous example, for a few values of nn, by iteratively solving the difference equation h[0]=14h[0−1]⏟0+18h[0−2]⏟0+2δ[0−1]⏟0=0h[0] = \frac{1}{4}\underbrace{h[0-1]}_{0} + \frac{1}{8}\underbrace{h[0-2]}_{0} + 2\underbrace{\delta[0-1]}_{0} = 0 h[1]=14h[1−1]⏟0+18h[1−2]⏟0+2δ[1−1]⏟1=2h[1] = \frac{1}{4}\underbrace{h[1-1]}_{0} + \frac{1}{8}\underbrace{h[1-2]}_{0} + 2\underbrace{\delta[1-1]}_{1} = 2 h[2]=14h[2−1]⏟2+18h[2−2]⏟0+2δ[2−1]⏟0=12h[2] = \frac{1}{4}\underbrace{h[2-1]}_{2} + \frac{1}{8}\underbrace{h[2-2]}_{0} + 2\underbrace{\delta[2-1]}_{0} = \frac{1}{2} h[3]=14h[3−1]⏟12+18h[3−2]⏟2+2δ[2−1]⏟0=38h[3] = \frac{1}{4}\underbrace{h[3-1]}_{\frac{1}{2}} + \frac{1}{8}\underbrace{h[3-2]}_{2} + 2\underbrace{\delta[2-1]}_{0} = \frac{3}{8} and comparing to our closed-form solution a the same values of nn h[0]=−83+83=0h[0] = -\frac{8}{3} + \frac{8}{3} = 0 h[1]=−83(−14)+83(12)=2h[1] = -\frac{8}{3}\left( -\frac{1}{4}\right) + \frac{8}{3}\left( \frac{1}{2}\right) = 2 h[2]=−83(−14)2+83(12)2=12h[2] = -\frac{8}{3}\left( -\frac{1}{4}\right)^2 + \frac{8}{3}\left( \frac{1}{2}\right)^2 = \frac{1}{2} h[3]=−83(−14)3+83(12)3=38h[3] = -\frac{8}{3}\left( -\frac{1}{4}\right)^3 + \frac{8}{3}\left( \frac{1}{2}\right)^3 = \frac{3}{8}



Example




Find the impulse response of the system given by y[n+1]−12y[n]=x[n+1]+x[n]y[n+1] - \frac{1}{2}y[n] = x[n+1] + x[n]

In step 1 we note the solution to Q(E)y[n]=0Q(E)y[n] = 0 is of the form yh[n]=C(12)ny_h[n] = C\left( \frac{1}{2}\right)^n From step 2 we note bN=1b_N = 1 and aN=−12a_N = -\frac{1}{2}, so that h[n]=−2δ[n]+C(12)nu[n]h[n] = -2\delta[n]  +  C\left( \frac{1}{2}\right)^n\, u[n] In step 3 we manually find h[0]h[0]

y[n]=12y[n−1]+x[n]+x[n−1]h[n]=12y[n−1]+δ[n]+δ[n−1]h[0]=0+1+0=1\begin{align*}
    y[n] &= \frac{1}{2}y[n-1] + x[n] + x[n-1]\\
    h[n] &= \frac{1}{2}y[n-1] + \delta[n] + \delta[n-1]\\
    h[0] &= 0 + 1 + 0 = 1  
\end{align*}
And in step 4 we solve for CC h[0]=−2+C=1 implies C=3h[0] = -2  +  C = 1 \mbox{ implies } C = 3 to give h[n]=−2δ[n]+3(12)nu[n]h[n] = -2\delta[n]  +  3\left( \frac{1}{2}\right)^n\, u[n]









6 Linear Time Invariant CT Systems

Today’s topic is our introduction to CT systems and the important case of CT Linear, Time-Invariant Systems.


6.1 System types

A system is an interconncted set of components or sub-systems. Mathematically a system is a transformation, TT, between one or more signals, a rule that maps functions to functions.


	single input - single output (SISO) system.



[image: diagram showing the block diagram of a single-input, single-output system]

SISO Block Diagram




	single input - multiple output (SIMO) system



[image: diagram showing the block diagram of a single-input, multiple-output system]

SIMO Block Diagram




	general case, multiple input - multiple output (MIMO)



[image: diagram showing the block diagram of a multiple-input, multiple-output system]

MIMO Block Diagram






We will focus on single input - single output, CT and DT systems.


	If both input and output are CT signals, it is a CT system.



[image: diagram showing the block diagram of a CT system]

Generic Block Diagram of CT System




	If both input and output are DT signals, it is a DT system.



[image: diagram showing the block diagram of a DT system]

Generic Block Diagram of a DT System




	If input and output are not both CT or DT signals, it is a hybrid CT-DT system.



[image: diagram showing the block diagram of a hybrid system with DT input and CT output]

Generic Block Diagram of a Hybrid DT/CT System





[image: diagram showing the block diagram of a hybrid system with CT input and DT output]

Generic Block Diagram of a Hybrid CT/DT System






As a shorthand notation for the graphical description above we can use x↦yx \mapsto y. A system maps a function xx to a function yy:


	CT system x(t)↦y(t)x(t) \mapsto y(t)


	DT system x[n]↦y[n]x[n] \mapsto y[n]


	Hybrid CT-DT system x[n]↦y(t)x[n] \mapsto y(t)

or

x(t)↦y[n]x(t) \mapsto y[n]




When a system has no input, the system is autonomous. An autonomous system just produces output: ↦y\mapsto y.



[image: diagram showing the block diagram of an autonomous system]

Generic Block Diagram of an Autonomous System



We can think of an autonomous system as a function generator, producing signals for use, or as modeling a measurement process.



6.2 CT system representations

We can mathematically represent, or model, systems multiple ways.


	purely mathematically - in time domain we will use


	for CT systems: linear, constant coefficient differential equations. e.g. y′′+ay′+by=xy^{\prime\prime} + ay^\prime + by = x


	for DT systems: linear, constant coefficient difference equation, e.g. y[n]=ay[n−1]+by[n−2]+x[n]y[n] = a y[n-1] + b y[n-2] + x[n]




or


	for CT systems: CT impulse response


	for DT systems: DT impulse response





	purely mathematically - in frequency domain we will use


	frequency response


	transfer function (complex frequency, covered in ECE 3704)





	graphically, using a mixture of math and block diagrams




Mathematical models:


	provide abstraction, removing (often) irrelevant detail.


	can be more or less detailed, an internal v.s. external (block box) description


	are not unique with respect to instantiation (implementation)


	are limited to the regime they were designed for






Example




Consider the RC circuit. It is a single input - single output system. We will be able to represent it mathematically or graphically and internally or externally.


	External - Graphical



[image: of a block diagram annotated with an impulse response]

External Model




	External - Symbolic

y(t)=h(t)*x(t)y(t) = h(t)*x(t)


	Internal - Graphical



[image: of a simple Series RC circuit]

Internal Model




	Internal - Symbolic

y′+1RCy=1RCx(t)y^\prime + \frac{1}{RC} y = \frac{1}{RC} x(t)








Note: internal models usually have several paramters (the resistor and capacitor values in the example above), while the external model does not. Thus another term for external model is a lumped parameter model.

It does not matter what the underlying system implementation is. For example, consider a mechanical system, described by a second-order ODE:



[image: of a simple mass-spring-damper system]

Mechanical Diagram






	yy = position
	MM = mass



	y′y^\prime = velocity
	KK = spring constant



	y′′y^{\prime\prime} = acceleration
	BB = coefficient of friction





y′′+BMy′+KMy=1Mf(t)y^{\prime\prime} + \frac{B}{M} y^\prime + \frac{K}{M}y = \frac{1}{M}f(t)

Compare this to the parallel RLC circuit, described by the second-order ODE:



[image: of a circuit diagram for a parallel RLC circuit]

Circuit Diagram






	yy = voltage
	RR = resistance



	Cy′Cy^\prime = capacitor current
	LL = inductance



	
	CC = capacitance





y′′+1RCy′+1LCy=1LCf(t)y^{\prime\prime} + \frac{1}{RC} y^\prime + \frac{1}{LC}y = \frac{1}{LC}f(t)

Comparing these systems, if R=1BR = \frac{1}{B}, L=1KL = \frac{1}{K}, and C=MC = M, they are mathematically identical.



6.3 System properties and classification

Choosing the right kind of system model is important. Here are some important properties that allow us to broadly classify systems.


	Memory


	Invertability


	Causality


	Stability


	Time-invariance


	Linearity




Let’s define each it turn.


6.3.1 Memory

The output of a system with memory depends on previous or future inputs and is said to be dynamic. Otherwise the system is memoryless or instantaneous, and the output y(t)y(t) at time tt depends only on x(t)x(t). For example in CT: y(t)=2x(t)y(t) = 2x(t) is a memoryless system, while y(t)=∫−∞tx(τ)dty(t) = \int\limits_{-\infty}^{t} x(\tau) \; dt has memory.



6.3.2 Invertability

A system is invertable if there exists a system that when placed in series with the original recovers the input. x(t)↦Ty(t)↦T−1x(t)x(t) \mapsto{T} y(t) \mapsto{T^{-1}} x(t) where T−1T^{-1} is the inverse system of TT. For example, consider a system x(t)↦y(t)=∫−∞tx(τ)dτx(t) \mapsto y(t) = \int\limits_{-\infty}^t x(\tau) \; d\tau and a system y(t)↦z(t)=dydty(t) \mapsto z(t) = \frac{dy}{dt} The combination in series x(t)↦y(t)↦z(t)=x(t)x(t) \mapsto y(t) \mapsto z(t) = x(t), i.e. the derivative undoes the integral.



6.3.3 Causality

A CT system is causal if the output at time tt depends on the input for time values at or before tt: y(t)depends onx(τ)forτ≤ty(t) \;\text{depends on}\; x(\tau) \;\text{for} \; \tau \leq t All physical CT systems are causal, even if all continuous systems are not (e.g. continuous 2D images f(u,v)f(u,v), have no "before" and "after").

For example, consider a CT system whose impulse response is h(t)=e−t2h(t) = e^{-t^2}. This implies the system produces output before (i.e. for t<0t < 0) the impulse is applied at t=0t=0, somehow anticipating the arrival of the impulse. Barring time-travel, this is physically impossible.



6.3.4 Stability

A CT system is (BIBO) stable if applying a bounded-input (BI) |x(t)|<∞∀t\left|x(t)\right| < \infty \; \forall \; t results in a bounded-output (BO) x(t)↦y(t)x(t) \mapsto y(t) and |y(t)|<∞∀t\left|y(t)\right| < \infty \; \forall \; t Note, bounded in practice is limited by the physical situation, e.g. positive and negative rails in a physical circuit.

For example, a CT system described by the LCCDE dydt(t)−2y(t)=x(t)\frac{dy}{dt}(t) - 2y(t) = x(t) is unstable because the solution y(t)y(t) will have one term of the form Ce2tCe^{2t}, for most non-zero inputs x(t)x(t) or any non-zero initial condition, that grows unbounded as time increases.



6.3.5 Time-invariance

A CT system is time-invariant if, given x(t)↦y(t)x(t) \mapsto y(t) then a time-shift of the input leads to the same time-shift in the output x(t−τ)↦y(t−τ)x(t-\tau) \mapsto y(t-\tau)

An important counterexample is a CT system described by a LCCDE, e.g. dydt(t)+y(t)=x(t)\frac{dy}{dt}(t) + y(t) = x(t) but non-zero auxillary conditions at some t0t_0, y(t0)=y0≠0y(t_0) = y_0 \neq 0. Such systems will have a term in its solution that depends on y0y_0. However if I time shift the input, the term that depends on y0y_0 does not shift (since it is anchored to t0t_0) and the total output does not shift identically with the input. Thus the system cannot be time-invariant.



6.3.6 Linearity

A CT system is linear if the output due to a sum of scaled individual inputs is the same as the scaled sum of the individual outputs with respect to those inputs. In other words given x1(t)↦y1(t)andx2(t)↦y2(t)x_1(t) \mapsto y_1(t) \;\text{and}\; x_2(t) \mapsto y_2(t) then ax1(t)+bx2(t)↦ay1(t)+by2(t)a x_1(t) + b x_2(t) \mapsto a y_1(t) + b y_2(t) for constants aa and bb. Note this property extends to sums of arbitrary signals, e.g. if xi(t)↦yi(t)∀i∈[1⋯N]x_i(t) \mapsto y_i(t) \; \forall\; i \in [1 \cdots N] then given NN constants aia_i, if the system is linear ∑i=1Naixi(t)↦∑i=1Naiyi(t)\sum\limits_{i = 1}^N a_i x_i(t) \mapsto \sum\limits_{i = 1}^N a_i y_i(t) This is a very important property, called superposition, and it simplifies the analysis of systems greatly.

Similar to time-invariance an important non-linear system is that is described by a LCCDE with non-zero auxillary conditions at some t0t_0, y(t0)=y0y(t_0) = y_0. Again such systems will have a term in it’s solution that depends on y0y_0. Given two inputs, each individual response will have that term in it, so thier sum has double that term. However the response due to the sum of the inputs would again only have one and the sum of the responses would not be the same as the response of the sum. Such a system cannot be linear.




6.4 Stable LTI Systems

The remainder of this course is about stable, linear, time-invariant (LTI) systems. As we have seen in CT such systems can be described by a LCCDE with zero auxillary (initial) conditions (the system is at rest).

We have seen previously how to find the impulse response, h(t)h(t), of such systems. We now note some relationships between the impulse response and the system properties described above.


	If a system is memoryless then h(t)=Cδ(t)h(t) = C \delta(t) for some constant CC.


	If a system is causal then h(t)=0h(t) = 0 for t<0t < 0.


	If a system is BIBO stable then ∫−∞∞|h(t)|dt<∞\int\limits_{-\infty}^{\infty} |h(t)| \; dt < \infty








7 Linear Time Invariant DT Systems

Today’s topic is our introduction to systems and the important case of DT Linear, Time-Invariant Systems.


7.1 DT system representations

We can mathematically represent, or model, DT systems multiple ways.


	purely mathematically - in time domain we will use


	linear, constant coefficient difference equations, e.g. y[n]=ay[n−1]+by[n−2]+x[n]y[n] = a y[n-1] + b y[n-2] + x[n]


	DT impulse response h[n]h[n]





	purely mathematically - in frequency domain we will use


	frequency response


	transfer function (complex frequency, covered in ECE 3704)





	graphically, using a mixture of math and block diagrams






7.2 System properties and classification

Choosing the right kind of system model is important. Here are some important properties that allow us to broadly classify systems.


	Memory


	Invertability


	Causality


	Stability


	Time-invariance


	Linearity




Let’s define each it turn.


7.2.1 Memory

The output of a DT system with memory depends on previous or future inputs and is said to be dynamic. Otherwise the system is memoryless or instantaneous, and the output y[n]y[n] at index nn depends only on x[n]x[n]. For example: y[n]=2x[n]y[n] = 2x[n] is a memoryless system, while y[n+1]+y[n]=x[n]y[n+1] + y[n] = x[n] has memory. To see this, write the difference equation in recursive form y[n]=−y[n−1]+x[n−1]y[n] = -y[n-1] + x[n-1] and we see explicitly the current output y[n]y[n] depends on past values of output and input.



7.2.2 Invertability

A system is invertible if there exists a system that when placed in series with the original recovers the input. x[n]↦Ty[n]↦T−1x[n]x[n] \mapsto{T} y[n] \mapsto{T^{-1}} x[n] where T−1T^{-1} is the inverse system of TT. For example, consider a system x[n]↦y[n]=∑m=−∞nx[m]x[n] \mapsto y[n] = \sum\limits_{m=-\infty}^{n} x[m] and a system y[n]↦z[n]=y[n]−y[n−1]y[n] \mapsto z[n] = y[n] - y[n-1] The combination in series x[n]↦y[n]↦z[n]=x[n]x[n] \mapsto y[n] \mapsto z[n] = x[n], since z[n]=y[n]−y[n−1]=∑m=−∞nx[m]−∑m=−∞n−1x[m]=x[n]z[n] = y[n] - y[n-1] = \sum\limits_{m=-\infty}^{n} x[m] - \sum\limits_{m=-\infty}^{n-1} x[m] = x[n] i.e. the difference undoes the accumulation.



7.2.3 Causality

A DT system is causal if the output at index nn depends on the input for index values at or before nn: y[n]depends onx[m]form≤ny[n] \;\text{depends on}\; x[m] \;\text{for} \; m \leq n While all physical CT systems are causal, practical DT systems may not be since we can use memory to "shift time". For CT systems we cannot store the infinite number of values between two time points t1t_1 and t2t_2, but we can store the n2−n1n_2-n_1 values of a DT system between between two indices n1n_1 and n2n_2 (assuming infinite precision).



Example




Consider a DT system whose difference equation is y[n]=−x[n−1]+2x[n]−x[n+1]y[n] = -x[n-1] + 2x[n] - x[n+1] We see the current output y[n]y[n] depends on a "future" value of the input x[n+1]x[n+1]. Thus the system is not causal. In practice we can shift the difference equation to y[n−1]=−x[n−2]+2x[n−1]−x[n]y[n-1] = -x[n-2] + 2x[n-1] - x[n] and then delay the output by one sample to get y[n]y[n].







Example




Consider a DT system whose difference equation is y[n]=−y[n−1]+2x[n]y[n] = -y[n-1] + 2x[n] We see the current output y[n]y[n] depends on a "past" value of the output y[n−1]y[n-1] and the current input x[n]x[n]. Thus the system is causal. In practice we can immediately compute y[n]y[n] with no delay.







7.2.4 Stability

A DT system is (BIBO) stable if applying a bounded-input (BI) |x[n]|<∞∀n\left|x[n]\right| < \infty \; \forall \; n results in a bounded-output (BO) x[n]↦y[n]x[n] \mapsto y[n] and |y[n]|<∞∀n\left|y[n]\right| < \infty \; \forall \; n Note, bounded in practice is limited by the physical situation, e.g. the number of bits used to store values.

For example, a DT system described by the LCCDE y[n+1]−2y[n]=x[n+1]y[n+1] - 2 y[n] = x[n+1] is unstable because the solution y[n]y[n] will have one term of the form (2)n\left( 2\right)^n, for most non-zero inputs x[n]x[n] or any non-zero initial condition, that grows unbounded as nn increases.



7.2.5 Time-invariance

A DT system is time(index)-invariant if, given x[n]↦y[n]x[n] \mapsto y[n] then an index-shift of the input leads to the same index-shift in the output x[n−m]↦y[n−m]x[n-m] \mapsto y[n-m]

An important example is a DT system described by a LCCDE, e.g. y[n+1]−12y[n]=x[n+1]y[n+1] - \frac{1}{2} y[n] = x[n+1] or in recursive form y[n]=12y[n−1]+x[n]y[n] = \frac{1}{2} y[n-1] + x[n]

If we index shift the input x[n−m]x[n - m] we replace nn by n−mn-m and the difference equation becomes y[n−m+1]−12y[n−m]=x[n−m+1]y[n-m+1] - \frac{1}{2} y[n-m] = x[n-m+1] which has the same solution shifted by mm y[n−m]=12y[n−m−1]+x[n−m]y[n-m] = \frac{1}{2} y[n-m -1] + x[n-m]

If a coefficient depends on nn however, e.g y[n+1]−n2y[n]=x[n+1]y[n+1] - \frac{n}{2} y[n] = x[n+1] so that it is no longer LCC then the solution depends on mm and the system is no longer time-invariant.



7.2.6 Linearity

A DT system is linear if the output due to a sum of scaled individual inputs is the same as the scaled sum of the individual outputs with respect to those inputs. In other words given x1[n]↦y1[n]andx2[n]↦y2[n]x_1[n] \mapsto y_1[n] \;\text{and}\; x_2[n] \mapsto y_2[n] then ax1[n]+bx2[n]↦ay1[n]+by2[n]a x_1[n] + b x_2[n] \mapsto a y_1[n] + b y_2[n] for constants aa and bb. Note this property extends to sums of arbitrary signals, e.g. if xi[n]↦yi[n]∀i∈[1⋯N]x_i[n] \mapsto y_i[n] \; \forall\; i \in [1 \cdots N] then given NN constants aia_i, if the system is linear ∑i=1Naixi[n]↦∑i=1Naiyi[n]\sum\limits_{i = 1}^N a_i x_i[n] \mapsto \sum\limits_{i = 1}^N a_i y_i[n] This is a very important property, called superposition, and it simplifies the analysis of systems greatly.

An important non-linear system is that is described by a LCCDE with non-zero auxiliary conditions at some n0n_0, y[n0]=y0y[n_0] = y_0. As in CT, such systems will have a term in it’s solution that depends on y0y_0. Given two inputs, each individual response will have that term in it, so their sum has double that term. However the response due to the sum of the inputs would again only have one and the sum of the responses would not be the same as the response of the sum. Such a system cannot be linear. Thus the system must be "at rest" before applying the input in order to be a linear system.




7.3 Stable LTI Systems

The remainder of this course is about stable, linear, time-invariant (LTI) systems. As we have seen in DT such systems can be described by a LCCDE with zero auxiliary (initial) conditions (the system is at rest).

We have seen previously how to find the impulse response, h[n]h[n], of such systems. We now note some relationships between the impulse response and the system properties described above.


	If a system is memoryless then h[n]=Cδ[n]h[n] = C \delta[n] for some constant CC.


	If a system is causal then h[n]=0h[n] = 0 for n<0n < 0.


	If a system is BIBO stable then ∑−∞∞|h[n]|<∞\sum\limits_{-\infty}^{\infty} |h[n]| < \infty








8 CT Convolution


8.1 Review CT LTI systems and superposition property

Recall the superposition property of LTI systems. If a CT system is LTI then the superposition property holds. Given a system where xi(t)↦yi(t)∀ix_i(t) \mapsto y_i(t) \; \forall\; i then ∑iaixi(t)↦∑iaiyi(t)\sum\limits_{i} a_i x_i(t) \mapsto \sum\limits_{i} a_i y_i(t)

Superposition enables a powerful problem reduction strategy. The overall idea for is that if:


	we can write an arbitrary signal as a sum of simple signals, and


	we can determine the response to the simple signals, then


	we can easily express the output due to the input using superposition




This will be a recurring pattern in this course. In this lecture, the simple signals are weighted, time shifts of one signal, the delta function, δ(t)\delta(t).



8.2 Convolution Integral

To derive this we start with the sifting property of the CT impulse function (from chapter 2) ∫abx(t)δ(t−t0)dt=x(t0)\int\limits_{a}^{b} x(t)\delta(t-t_0) \; dt = x(t_0) for any a<t0<ba < t_0 < b. A slight change of variables (t0→τt_0 \rightarrow \tau) and limits (a→−∞a \rightarrow -\infty and b→∞b \rightarrow \infty) gives: x(t)=∫−∞∞x(τ)δ(t−τ)dτx(t) = \int\limits_{-\infty}^{\infty} x(\tau)\delta(t-\tau) \; d\tau showing that we can write any CT signal as an infinite sum (integral) of weighted and time-shifted impluse functions.

Let h(t)h(t) be the CT impulse response, the output due to the input δ(t)\delta(t), i.e. δ(t)↦h(t)\delta(t) \mapsto h(t). Then if the system is time-invariant: δ(t−τ)↦h(t−τ)\delta(t-\tau) \mapsto h(t-\tau) and by superposition if the input is writen as x(t)=∫−∞∞x(τ)δ(t−τ)dτx(t) = \int\limits_{-\infty}^{\infty} x(\tau)\delta(t-\tau) \; d\tau then the output is given by y(t)=∫−∞∞x(τ)h(t−τ)dτ=x(t)*h(t)y(t) = \int\limits_{-\infty}^{\infty} x(\tau)h(t-\tau) \; d\tau = x(t) * h(t) This is called the convolution integral .

It is worth pausing here to see the signifigance. For a LTI CT system, if I know its impulse response h(t)h(t), I can find the response due to any input using convolution. For this reason the impulse response is another way to represent an LTI system.



8.3 Graphical View of the Convolution Integral.

Let us break the convolution expression down into pieces. In its general form the convolution of two signals x1(t)x_1(t) and x2(t)x_2(t) is x1(t)*x2(t)=∫−∞∞x1(τ)x2(t−τ)dτx_1(t) * x_2(t) = \int\limits_{-\infty}^{\infty} x_1(\tau)x_2(t-\tau) \; d\tau

Suppose x1(t)x_1(t) and x2(t)x_2(t) are signals that look like



[image: diagram showing the signals being used for convolution]

The two signals being convolved.



Then x1(τ)x_1(\tau) and x2(−τ)x_2(-\tau) look like



[image: diagram showing the signals being used for convolution, see caption]

The second signal reflected.



The signal x2(t−τ)x_2(t-\tau) is x2(−τ)x_2(-\tau) shifted by tt (since x2(−τ+t)=x2(t−τ)x_2(-\tau+t)= x_2(t-\tau)) and then looks like



[image: diagram showing the signals being used for convolution, see caption]

The second reflected signal, shifted.



Then the integrand of convolution is the product x1(τ)x2(t−τ)x_1(\tau)x_2(t-\tau) whose plot depends of the value of tt. Some examples, where the individual signals are dashed and their product is in bold:



[image: diagram showing the signals being used for convolution, see caption]

The product of the two signals under the convolution integrand.



Then convolution is the total integral of the product (bold curves above) for that value of tt. For the example above we see the integral will be zero for tt less than t0t_0 since the two signals do not overlap and their product is zero. For t0<t<t1t_0 < t < t_1 the signals overap and the product is non-zero, and the effective bounds of integration are [t0,t][t_0,t]. For t>t1t > t_1 the signals again overap and the product is non-zero, but the effective bounds of integration are [t0,t1][t_0,t_1].



8.4 Examples of CT Convolution



Example




Consider the convolution of two unit step functions. u(t)*u(t)=∫−∞∞u(τ)u(t−τ)dτu(t) * u(t) = \int\limits_{-\infty}^{\infty} u(\tau)u(t-\tau) \; d\tau The product u(τ)u(t−τ)u(\tau) u(t-\tau) is non-zero only when t≥0t\geq 0 as illustrated here



[image: diagram showing the signals being used for convolution, see caption]

The product of the two step signals under the convolution integrand.



The convolution integral is then the shaded area u(t)*u(t)={0t<0∫0tdτ=tt≥0u(t) * u(t) = \left\{ \begin{array}{lc}
  0 & t< 0\\
  \int\limits_{0}^{t} d\tau = t  & t \geq 0\\
\end{array}\right. Combining this back into a single expression gives: u(t)*u(t)=tu(t)u(t) * u(t) = tu(t) Thus the convolution of two step signals is a ramp signal.







Example




Let x1(t)=u(t)x_1(t) = u(t) and x2(t)=e−atu(t)x_2(t) = e^{-at}u(t) for constant a∈ℂa\in\mathbb{C}, then u(t)*e−atu(t)=∫−∞∞u(τ)e−a(t−τ)u(t−τ)dτu(t) * e^{-at}u(t) = \int\limits_{-\infty}^{\infty} u(\tau)e^{-a(t-\tau)}u(t-\tau) \; d\tau Similar to the previous example, the product u(τ)e−a(t−τ)u(t−τ)u(\tau) e^{-a(t-\tau)} u(t-\tau) is non-zero only when t≥0t\geq 0



[image: diagram showing the signals being used for convolution, see caption]

The product of the two step signals under the convolution integrand.



The convolution integral is then the shaded area u(t)*e−atu(t)={0t<0∫0te−a(t−τ)dτ=1−e−atat≥0u(t) * e^{-at}u(t) = \left\{ \begin{array}{lc}
  0 & t< 0\\
  \int\limits_{0}^{t} e^{-a(t-\tau)} d\tau = \frac{1-e^{-at}}{a}  & t \geq 0\\
\end{array}\right. Combining this back into a single expression gives: u(t)*e−atu(t)=1−e−atau(t)u(t) * e^{-at}u(t) = \frac{1-e^{-at}}{a}u(t)







Example




Let x1(t)=δ(t)x_1(t) = \delta(t) and x2(t)x_2(t) be an arbitrary signal. Then δ(t)*x2(t)=∫−∞∞δ(τ)x2(t−τ)dτ\delta(t) * x_2(t) = \int\limits_{-\infty}^{\infty} \delta(\tau)x_2(t-\tau) \; d\tau By the sifting property of the delta function this evaluates to δ(t)*x2(t)=x2(t)\delta(t) * x_2(t) = x_2(t) or in other words convolution with a delta function just results in the signal it was convolved with. That is it acts like the identity function, with respect to convolution.





The appendix lists several CT convolution results.



8.5 Properties of CT Convolution

There are several useful properties of convolution. We do not prove these here, but it is not terribly difficult to do so. Given signals x1(t)x_1(t), x2(t)x_2(t), and x3(t)x_3(t):


	Communative Property

	
The ordering of the signals does not matter. x1(t)*x2(t)=x2(t)*x1(t)x_1(t) * x_2(t) = x_2(t) * x_1(t)



	Distributive Property

	
Convolution is distributed over addition. x1(t)*[x2(t)+x3(t)]=[x1(t)*x2(t)]+[x1(t)*x3(t)]x_1(t) * \left[x_2(t) + x_3(t)\right] = \left[x_1(t) * x_2(t) \right] + \left[x_1(t) * x_3(t) \right]



	Associative Property

	
The order of convolution does not matter. x1(t)*[x2(t)*x3(t)]=[x1(t)*x2(t)]*x3(t)x_1(t) * \left[x_2(t) * x_3(t)\right] = \left[x_1(t) * x_2(t) \right] * x_3(t)



	Time Shift

	
Given x3(t)=x1(t)*x2(t)x_3(t) = x_1(t) * x_2(t) then for time shifts τ1,τ2∈ℝ\tau_1, \tau_2 \in \mathbb{R} x1(t−τ1)*x2(t−τ2)=x3(t−τ1−τ2)x_1(t-\tau_1) * x_2(t-\tau_2) = x_3(t-\tau_1 - \tau_2)



	Multiplicative Scaling

	
Given x3(t)=x1(t)*x2(t)x_3(t) = x_1(t) * x_2(t) then for constants a,b∈ℂa,b \in \mathbb{C} [ax1(t)]*[bx2(t)]=abx3(t)\left[a\, x_1(t)\right] * \left[b\, x_2(t)\right] = a\, b\, x_3(t)





These properties can be used in combination with a table like that above to compute the convolution of a wide variety of signals without evaluating the integrals.



Example




Here is a simple example. Let x1(t)=etu(t)x_1(t) = e^tu(t) and x2(t)=2δ(t)+5e−3tu(t)x_2(t) = 2\delta(t) + 5e^{-3t}u(t). x1(t)*x2(t)=etu(t)*[2δ(t)+5e−3tu(t)]x_1(t) * x_2(t) =  e^tu(t) * \left[2\delta(t) + 5e^{-3t}u(t)\right] Using the distributive property x1(t)*x2(t)=2[δ(t)*etu(t)]+5[etu(t)*e−3tu(t)]x_1(t) * x_2(t) =  2\left[\delta(t) * e^tu(t)\right]  + 5\left[e^tu(t) * e^{-3t}u(t)\right] Using previously derived results involving the delta function and the table row 3 x1(t)*x2(t)=2etu(t)+5[et−e−3t4]u(t)x_1(t) * x_2(t) = 2 e^t\, u(t) + 5\left[ \frac{e^t-e^{-3t}}{4}\right]u(t) Doing some simplification gives the result x1(t)*x2(t)=[134et−54e−3t]u(t)x_1(t) * x_2(t) = \left[ \frac{13}{4}e^t-\frac{5}{4}e^{-3t}\right]u(t)







Example




Here is a more complicated example. Let x1(t)=2e−5tu(t−1)x_1(t) = 2e^{-5t}u(t-1) and x2(t)=(1−e−t)u(t)x_2(t) = \left(1-e^{-t}\right)u(t). x1(t)*x2(t)=[2e−5tu(t−1)]*[(1−e−t)u(t)]x_1(t) * x_2(t) = \left[2e^{-5t}u(t-1)\right] * \left[\left(1-e^{-t}\right)u(t)\right] We first rewrite e−5tu(t−1)=e−5e−5(t−1)u(t−1)=e−5e−5tu(t)|t=t−1e^{-5t}u(t-1)=e^{-5}e^{-5(t-1)}u(t-1) = e^{-5}e^{-5t}u(t)\Big|_{t=t-1} so that we can remove the time shift x1(t)*x2(t)=2e−5[e−5tu(t)]*[(1−e−t)u(t)]|t=t−1x_1(t) * x_2(t) = 2e^{-5}\left[e^{-5t}u(t)\right] * \left[\left(1-e^{-t}\right)u(t)\right]\Big|_{t=t-1} We now apply the distributive property x1(t)*x2(t)=2e−5[(e−5tu(t)*u(t))−(e−5tu(t)*e−tu(t))]|t=t−1x_1(t) * x_2(t) = 2e^{-5}\left[\left(e^{-5t}u(t) * u(t)\right) - \left(e^{-5t}u(t)* e^{-t}u(t)\right)\right]\Big|_{t=t-1} Using the table rows 1 and 3 we get x1(t)*x2(t)=2e−5[15(1−e−5t)u(t)+14(e−5t−e−t)u(t)]|t=t−1x_1(t) * x_2(t) = 2e^{-5}\left[\frac{1}{5}\left(1-e^{-5t}\right)u(t) + \frac{1}{4}\left(e^{-5t} - e^{-t}\right)u(t)\right]\Big|_{t=t-1} Combining terms we simplify to x1(t)*x2(t)=2e−5[15−14e−t+120e−5t]u(t)|t=t−1x_1(t) * x_2(t) = 2e^{-5}\left[\frac{1}{5} - \frac{1}{4}e^{-t} + \frac{1}{20}e^{-5t} \right]u(t)\Big|_{t=t-1} Replacing the time shift gives the final result x1(t)*x2(t)=2e−5[15−14e−(t−1)+120e−5(t−1)]u(t−1)x_1(t) * x_2(t) = 2e^{-5}\left[\frac{1}{5} - \frac{1}{4}e^{-(t-1)} + \frac{1}{20}e^{-5(t-1)} \right]u(t-1) which can be cleaned up a bit more by distributing the leading term x1(t)*x2(t)=[25e−5−12e−(t+4)+110e−5t]u(t−1)x_1(t) * x_2(t) =\left[\frac{2}{5}e^{-5} -\frac{1}{2}e^{-(t+4)} +\frac{1}{10}e^{-5t}\right]u(t-1)













Useful Mathematical Definitions and Tables


Definition of modulus for integers

Let n∈ℤn\in\mathbb{Z} and N∈ℕN \in \mathbb{N}. The mod operator n%N={remainder(nN)n≥0N−remainder(|n|N)n<0n \% N = \left\{ \begin{array}{cc}
  \text{remainder}\left(\frac{n}{N}\right) & n \geq 0\\
  N - \text{remainder}\left(\frac{|n|}{N}\right) & n < 0
  \end{array}
\right. where remainder\text{remainder} is the remainder after dividing nn by NN.



Table of Representative Convolution Integrals


CT Convolution Table


	x1(t)x_1(t)
	x2(t)x_2(t)
	x1(t)*x2(t)x_1(t) * x_2(t)





	u(t)u(t)
	eatu(t)e^{a t}u(t)
	1−eat−au(t)\frac{1-e^{a t}}{-a}u(t)



	u(t)u(t)
	u(t)u(t)
	tu(t)tu(t)



	ea1tu(t)e^{a_1 t}u(t)
	ea2tu(t)e^{a_2 t}u(t)
	ea1t−ea2ta1−a2u(t)\frac{e^{a_1 t}-e^{a_2 t}}{a_1 - a_2}u(t) for a1≠a2a_1 \neq a_2



	eatu(t)e^{a t}u(t)
	eatu(t)e^{a t}u(t)
	teatu(t)te^{a t}u(t)



	tea1tu(t)te^{a_1 t}u(t)
	ea2tu(t)e^{a_2 t}u(t)
	ea2t−ea1t+(a1−a2)tea1t(a1−a2)2u(t)\frac{e^{a_2 t}-e^{a_1 t} + (a_1-a_2)te^{a_1 t}}{(a_1 - a_2)^2}u(t) for a1≠a2a_1 \neq a_2



	ea1tcos(βt+θ)u(t)e^{a_1 t}\cos(\beta t + \theta)u(t)
	ea2tu(t)e^{a_2 t}u(t)
	cos(θ−ϕ)ea2t−ea1tcos(βt+θ−ϕ)(a1+a2)2+β2u(t)\frac{\cos(\theta - \phi)e^{a_2 t} - e^{a_1 t}\cos(\beta t + \theta - \phi)}{\sqrt{(a_1 + a_2)^2 + \beta^2}}u(t)



	
	
	ϕ=arctan(−βa1+a2)\phi = \arctan\left( \frac{-\beta}{a_1 + a_2}\right)







Table of Representative Convolution Sums


DT Convolution Table


	x1[n]x_1[n]
	x2[n]x_2[n]
	x1[n]*x2[n]x_1[n] * x_2[n]





	u[n]u[n]
	u[n]u[n]
	(n+1)u[n](n+1)u[n]



	γnu[n]\gamma^{n}u[n]
	u[n]u[n]
	1−γn+11−γu[n]\frac{1-\gamma^{n+1}}{1-\gamma}u[n]



	γ1nu[n]\gamma_1^{n}u[n]
	γ2nu[n]\gamma_2^{n}u[n]
	γ1n+1−γ2n+1γ1−γ2u[n]\frac{\gamma_1^{n+1}-\gamma_2^{n+1}}{\gamma_1-\gamma_2}u[n] for γ1≠γ2\gamma_1 \neq \gamma_2



	γnu[n]\gamma^{n}u[n]
	γnu[n]\gamma^{n}u[n]
	(n+1)γnu[n](n+1)\gamma^{n}u[n]



	|γ1|ncos(βn+θ)u[n]|\gamma_1|^{n}\cos\left(\beta n + \theta \right)u[n]
	|γ2|nu[n]|\gamma_2|^{n}u[n]
	1R[|γ1|n+1cos(β(n+1)+θ−ϕ)−|γ2|n+1cos(θ−ϕ)]u[n]\frac{1}{R}\left[ |\gamma_1|^{n+1}\cos\left( \beta (n+1) + \theta - \phi\right) - |\gamma_2|^{n+1}\cos\left( \theta - \phi\right)\right]u[n]



	
	
	R=[|γ1|2+|γ2|2−2|γ1||γ2|cos(β)]12R = \left[ |\gamma_1|^2 + |\gamma_2|^2 -2|\gamma_1||\gamma_2|\cos(\beta)\right]^{\frac{1}{2}}



	
	
	ϕ=arctan(|γ1|sin(β)|γ1|cos(β)−|γ2|)\phi = \arctan\left( \frac{|\gamma_1|\sin(\beta)}{|\gamma_1|\cos(\beta) - |\gamma_2|} \right)







Table of Representative CT Fourier Transform Pairs


CT Fourier Transform Table


	x(t)x(t)
	X(jω)X(j\omega)





	11
	2πδ(ω)2\pi\delta(\omega)



	δ(t)\delta(t)
	11



	u(t)u(t)
	πδ(ω)+1jω\pi\delta(\omega) + \frac{1}{j\omega}



	e−atu(t)e^{-at}u(t)
	1a+jω\frac{1}{a + j\omega} for Re{a}>0Re\{a\} > 0



	te−atu(t)te^{-at}u(t)
	1(a+jω)2\frac{1}{\left(a + j\omega\right)^2} for Re{a}>0Re\{a\} > 0



	ejω0te^{j\omega_0 t}
	2πδ(ω−ω0)2\pi\delta(\omega-\omega_0)



	cos(ω0t)\cos(\omega_0 t)
	π[δ(ω−ω0)+δ(ω+ω0)]\pi\left[ \delta(\omega-\omega_0) + \delta(\omega+\omega_0)\right]



	sin(ω0t)\sin(\omega_0 t)
	jπ[δ(ω+ω0)−δ(ω−ω0)]j\pi\left[ \delta(\omega+\omega_0) - \delta(\omega-\omega_0)\right]



	e−atcos(ω0t)u(t)e^{-at}\cos(\omega_0 t)u(t)
	a+jω(a+jω)2+ω02\frac{a+j\omega}{(a+j\omega)^2 + \omega_0^2} for Re{a}>0Re\{a\} > 0



	e−atsin(ω0t)u(t)e^{-at}\sin(\omega_0 t)u(t)
	ω0(a+jω)2+ω02\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2} for Re{a}>0Re\{a\} > 0



	δ(t−t0)\delta(t - t_0)
	e−jt0ωe^{-j t_0 \omega}



	K0K_0
	2K0πδ(ω)2 K_0 \pi \delta(\omega)



	e−a|t|e^{-a|t|}, Re{a}>0\text{Re}\{a\} > 0
	2aa2+ω2\frac{2a}{a^2 + \omega^2}



	u(t+T)−u(t−T)u(t + T) - u(t - T)
	2Tsin(ωT)ωT2T \frac{\sin{(\omega T)}}{\omega T}



	sin(Wt)Wt\frac{\sin{({W}t)}}{W t}
	πW[u(ω+W)−u(ω−W)]\frac{\pi}{W} [u(\omega + W) - u(\omega - W)]



	e−t22σ2e^{-\frac{t^2}{2 \sigma^2}}
	σ2πe−σ2ω22\sigma \sqrt{2 \pi} e^{-\frac{\sigma^2 \omega^2}{2}}



	∑k=−∞∞akejkω0t\sum\limits_{k=-\infty}^{\infty} a_k e^{j k \omega_0 t}
	2π∑k=−∞∞akδ(ω−kω0)2 \pi \sum\limits_{k=-\infty}^{\infty} a_k \delta{(\omega - k \omega_0)}



	∑n=−∞∞δ(t−nT)\sum\limits_{n=-\infty}^{\infty} \delta(t - nT)
	ω0∑k=−∞∞δ(ω−kω0)\omega_0 \sum\limits_{k=-\infty}^{\infty} \delta{(\omega - k \omega_0)}, ω0=2πT\omega_0 = \frac{2 \pi}{T}







Table of Representative DT Fourier Transform Pairs


DT Fourier Transform Table


	x[n]x[n]
	X(ejω)X(e^{j\omega})





	δ[n]\delta[n]
	11



	δ[n−n0]\delta[n - n_0]
	e−jωn0e^{-j \omega n_0}



	u[n]u[n]
	11−e−jω+π∑k=−∞∞δ(ω−2kπ)\frac{1}{1 - e^{-j \omega}} + \pi \sum\limits_{k = - \infty}^{\infty} \delta(\omega - 2 k \pi)



	K0K_0
	2K0π∑k=−∞∞δ(ω−2kπ)2 K_0 \pi \sum\limits_{k = - \infty}^{\infty} \delta(\omega - 2 k \pi)



	anu[n]a^n u[n], |a|<1|a| < 1
	1(1−ae−jω)\frac{1}{(1 - ae^{-j \omega)}}



	nanu[n]n a^n u[n], |a|<1|a| < 1
	ae−jω(1−ae−jω)2\frac{a e^{-j \omega}}{(1 - a e^{-j \omega})^2}



	a|n|a^{|n|}, |a|<1|a| < 1
	1−a21−2acosω+a2\frac{1-a^2}{1 - 2 a \cos{\omega} + a^2}



	ejω0ne^{j \omega_0 n}
	2π∑k=−∞∞δ(ω−ω0−2kπ)2 \pi \sum\limits_{k = - \infty}^{\infty} \delta{(\omega - \omega_0 - 2 k \pi)}



	cos(ω0n)\cos{(\omega_0 n)}
	π∑k=−∞∞[δ(ω+ω0−2kπ)+δ(ω−ω0−2kπ)]\pi \sum\limits_{k = - \infty}^{\infty} [\delta(\omega + \omega_0 - 2 k \pi) + \delta(\omega - \omega_0 - 2 k \pi)]



	sin(ω0n)\sin{(\omega_0 n)}
	jπ∑k=−∞∞[δ(ω+ω0−2kπ)−δ(ω−ω0−2kπ)]j \pi \sum\limits_{k = - \infty}^{\infty} [\delta(\omega + \omega_0 - 2 k \pi) - \delta(\omega - \omega_0 - 2 k \pi)]



	u[n+n0]−u[n−n0]u[n + n_0] - u[n - n_0]
	sin(ω(n0+0.5))sin0.5ω\frac{\sin{(\omega (n_0 + 0.5))}}{\sin{0.5 \omega}}



	sin(Wn)πn\frac{\sin{({W}n)}}{\pi n}
	∑k=−∞∞X1(ω−2kπ),X1(ω)=10≤|ω|≤W,0<W<π0W<|ω|≤π,0<W<π\sum\limits_{k = - \infty}^{\infty} X_1(\omega - 2 k \pi), X_1(\omega) = \begin{array}{cc} 1 & 0 \le |\omega| \le W, 0 < W < \pi\\ 0 & W < |\omega| \le \pi,  0 < W < \pi \end{array}



	∑k=n0n0+N−1akejkω0n\sum\limits_{k=n_0}^{n_0+N-1} a_k e^{j k \omega_0 n}
	2π∑k=−∞∞akδ(ω−kω0)2 \pi \sum\limits_{k=-\infty}^{\infty} a_k \delta{(\omega - k \omega_0)}, ω0=2πN\omega_0 = \frac{2 \pi}{N},



	∑k=−∞∞δ[n−kN]\sum\limits_{k=-\infty}^{\infty} \delta[n - kN]
	ω0∑k=−∞∞δ(n−kω0)\omega_0 \sum\limits_{k=-\infty}^{\infty} \delta{(n - k \omega_0)}, ω0=2πN\omega_0 = \frac{2 \pi}{N},
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