Lecture 10
Inverse Laplace Transform

C.L. Wyatt

2025-09-13

In today’s lecture we introduce the Inverse Laplace Transform for CT signals and systems.

Inverse Unilateral Laplace Transform

Consider a causal function \(f(t)\) that may or may not be absolutely integrable. Let \(g(t)=f(t) e^{-c t}\) for some \(c>0\) such that

\[\int_{0}^{\infty}|g(t)| dt = \int_{0}^{\infty}\left|f(t) e^{-c t}\right| dt < \infty\]

Then the Fourier Transform of \(g(t)\) exists

\[\begin{aligned} G(\omega) & =\int_{-\infty}^{\infty} g(t) e^{-j \omega t} dt = \int_{0}^{\infty} f(t) e^{-c t} e^{-j \omega t} dt \\ & =\int_{0}^{\infty} f(t) e^{-(c+j \omega) t} dt \\ & =\left.\mathcal{L}_{1}\{f(t)\}\right|_{s = c+j\omega} \quad c \text{ fixed s.t. } c+j\omega \in \text{ROC} \end{aligned}\]

The inverse Fourier Transform is

\[g(t)=f(t) e^{-c t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{j \omega t} d\omega\]

multiply through by \(e^{c t}\)

\[\begin{aligned} e^{c t} g(t)=f(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{c t} e^{j \omega t} d\omega \\ & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\omega) e^{(c+j \omega) t} d\omega \end{aligned}\]

Substitute \(G(\omega)\)
\[f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\underbrace{\int_{0}^{\infty} f(\tau) e^{-(c+j \omega) \tau}}_{\left.F(s)\right|_{s=c+j \omega}} d\tau\right] e^{(c+j \omega) t} d \omega\] \[f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(c+j \omega) e^{(c+j \omega) t} d \omega\]

Let \(s=c+j \omega\). Since \(c\) is a constant \(ds = 0+j d\omega\) implying \(d \omega=\frac{1}{j} d s\) and \[f(t)=\frac{1}{2 \pi j} \int\limits_{c-j\infty}^{c+j\infty} F(s) e^{st}\; ds\] a complex integral.

Note: we can think of \(c\) as the real values such that \(f(t) e^{-c t}\) has a Fourier Transform. This is the ROC.

Does the above integral look like our contar Integrals from previous lectures?

Yes, if we use the Bromwitch contour.

contour of integration for inverse laplace transform. See caption.

The linear contour of integration for the inverse Laplace transform becomes the Bromwitch contour as \(R\rightarrow\infty\).

\[f(t)=\frac{1}{2 \pi j} \int\limits_{c-j \infty}^{c+j \infty} F(s) e^{s t} d s = \lim_{R \rightarrow \infty} \oint_{C(R)} F(s) e^{s t} ds\]

where \(C(R)\) is the Bromwitch contour.
This allows us to use the method of residues since \(C \in \text{ROC}\) implies \(C(R)\) encloses all singulartes of \(F(s)\).

Example: Recall that \(\mathcal{L}\{x(t)\}=\mathcal{L}\left\{e^{-a t} u(t)\right\}\) for \(a\in \mathbb{R}\) was \(\frac{1}{s+a} \text{Re}(s) > -a\)

Then

\[x(t)=\mathcal{L}_1 \left\{\frac{1}{s+a}\right\}=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+ j\infty} \frac{1}{s+a} e^{s t} d s \quad \text{for} c > -a\] or using the Bromwitch contour \[x(t) =\lim_{R \rightarrow \infty} \frac{1}{2 \pi j} \oint_{C(R)} \frac{e^{s t}}{s+a} ds \qquad c>-a\]

Now from last time, since \(e^{s t}\) is analytic and \(C(R)\) encloses the singulary at \(-a\), from the Residue Theorem

\[\oint \frac{e^{st}}{s+a}\; ds = 2\pi j k_1\] where the residual is

\[k_1 = \left. (s+a) \frac{e^{st}}{s+a} \right|_{s = -a} = \left. e^{st} \right|_{s = -a} = e^{-a t} \qquad t > 0\]

Thus

\[x(t) = \frac{1}{2\pi j} \cdot 2\pi j e^{-at} \qquad t > 0 = e^{-at}u(t)\]

Inverse Bilateral Laplace Transform

Given a non-causal signal \(x(t)\) we can write it as

\[x(t) =\underbrace{x_{1}(t) u(-t)}_{\text{anticausal part}} +\underbrace{x_{2}(t) u(t)}_{\text{causal part}}\]

\[\begin{aligned} L_2\left\{ x(t) \right\} &= \int_{-\infty}^{0} x_{1}(t) e^{-s t} \; dt + \int_{0}^{\infty} x_{2}(t) e^{-s t} \; dt\\ &= \int_{0}^{\infty} x_{1}(-t) e^{s t} \; dt + \mathcal{L}_1 \left\{x_{2}(t)\right\}\\ &= \left. \mathcal{L}_1 \left\{x_{1}(-t)\right\} \right|_{s = -s} + \mathcal{L}_1 \left\{x_{2}(t)\right\}\\ X(s) &= \underbrace{X_1(s)}_{\text{Re}(s) < U} + \underbrace{X_2(s)}_{\text{Re}(s) > L} \end{aligned}\] where the ROC of \(X(s)\) is the intersection of the ROC for \(X_1\) and \(X_2\), a strip in the complex plane \(L < \text{Re}(s) < U\).

To use this for the inverse we apply this in reverse.

\[x(t) = \left. \mathcal{L}_1^{-1}\left\{X_1(-s)\right\}\right|_{t\rightarrow -t} + \mathcal{L}_1^{-1}\left\{X_2(s)\right\}\]

Example: Recall an example of a forward bilateral Laplace transform from lecture 9 \[\mathcal{L}_{2}\left\{e^{-|t|}\right\}=\underbrace{\frac{-1}{s-1}}_{\text{Re}(s) < 1}+\underbrace{\frac{1}{s+1}}_{\text{Re}(s) > -1} = X(s)\]

Then \[x(t)=\mathcal{L}_{2}^{-1}\{X(s)\}=\left.\mathcal{L}_{1}^{-1}\left\{\frac{1}{s+1}\right\}\right|_{t\rightarrow -t} \mathcal{L}_1^{-1}\left\{\frac{1}{s+1}\right\}\]

From our previous result when \(a=1\)

\[\begin{aligned} x(t) & =\left.e^{-t} u(t)\right|_{t \rightarrow -t}+e^{-t} u(t) \\ & =e^{t} u(-t)+e^{-t} u(t)=e^{-|t|} \end{aligned}\]

Example: Find the inverse Laplace transform of \[X(s) = \frac{1}{s} \quad \text{Re}(s) > 0\; .\]

Solution: Since the ROC corresponds to a causal signal, for \(t > 0\) \[\begin{aligned} x(t) &= \frac{1}{2 \pi j} \int\limits_{c-j \infty}^{c+j \infty} X(s) e^{s t} \; ds \quad c > 0 \\ &= \frac{1}{2 \pi j} \oint \frac{e^{s t}}{s} \; ds\\ &= \frac{1}{2 \pi j} 2 \pi j \; k \\ &= \left.s \frac{e^{st}}{s}\right|_{s=0}\\ &=1 \quad t > 0 \\ \end{aligned}\] which can be written as \(x(t) = u(t)\) for all times \(t\).

Example: Find the inverse Laplace transform of \[X(s) = \frac{10}{s^{2} + 5s + 6} \quad \text{Re}(s) >-2 \; .\]

First we use the partial fraction expansion.

\[X(s) = \frac{10}{(s+2)(s+3)} =\frac{A}{s+2}+\frac{B}{s+3}\]

\[A=\left.\frac{10}{s+3}\right|_{s=-2}=\frac{10}{1}=10\]

\[B=\left.\frac{10}{s+2}\right|_{s=-3}=\frac{10}{-1}=-10\]

Then \[x(t)=\mathcal{L}_{1}^{-1}\left\{\frac{10}{s+2}\right\}+\mathcal{L}_{1}^{-1}\left\{\frac{-10}{s+3}\right\}\]

Using the Residue theorem,

\[\begin{aligned} x(t)&=\frac{10}{2 \pi j} \int\limits_{c-j\infty}^{c+j \infty} \frac{e^{s t}}{s+2} \; ds - \frac{10}{2 \pi j} \int\limits_{c-j \infty}^{c+j \infty} \frac{e^{s t}}{s+3} \; ds \\ & c>-2 \quad c>-2 \\ & =\frac{10}{2 \pi j} \oint \frac{e^{s t}}{s+2} \; d s - \frac{10}{2 \pi j} \oint \frac{e^{s t}}{s+3} \; ds \\ & =\frac{10}{2 \pi j} 2 \pi j e^{-2 t} - \frac{10}{2 \pi j} 2 \pi j e^{-3 t} \\ &=10 e^{-2 t}-10 e^{-3 t} \quad t>0 \end{aligned}\]

Writing the expression for all \(t\) gives:

\[x(t)=10\left(e^{-2 t}-e^{-3 t}\right) u(t) .\]

Example: Here is an example with complex singularties. Find the inverse Laplace transform of

\[X(s)=\frac{s}{s^{2}+2 s+5} \quad \text{Re}(s)>-1\]

Using the partial fraction expansion

\[X(s) = \frac{s}{(s + 1 + j2)(s + 1 - j2)} = \frac{A}{s + 1 + j2} + \frac{B}{s + 1 - j2}\] where \[A=\frac{-1-j2}{-1-j2+1-j2}=\frac{-1-j2}{-j4}=\frac{1}{2}-\frac{1}{4} j\]

\[B=\frac{-1+j2}{-1+j2+1+j2}=\frac{-1+j2}{j4}=\frac{1}{2}+\frac{1}{4} j\]

Then

\[x(t) = \mathcal{L}_{1}^{-1}\left\{\frac{\frac{1}{2}-\frac{1}{4} j}{s+1+j2}\right\}+\mathcal{L}_{1}^{-1}\left\{\frac{\frac{1}{2}+\frac{1}{4} j}{s+1-j2}\right\}\]

Using residues, let \(c = 0 > -1\)

\[x(t) = \frac{1}{2 \pi j} \int\limits_{-j \infty}^{j\infty} \frac{\frac{1}{2}-\frac{1}{4} j}{s+1+j2} e^{st}\; ds + \frac{1}{2 \pi j} \int\limits_{-j \infty}^{j\infty} \frac{\frac{1}{2}+\frac{1}{4} j}{s+1-j2} e^{st}\; ds\]

\[x(t)=\frac{1}{2 \pi j} 2 \pi j \, k_{1}+\frac{1}{2 \pi j} 2 \pi j\, k_{2}\]

\[\begin{aligned} & k_{1}=\left(\frac{1}{2}-\frac{1}{4} j\right) e^{(-1-j 2) t} \quad k_{2}=\left(\frac{1}{2}+\frac{1}{4} j\right) e^{(-1+j 2) t} \\ & x(t)=k_{1}+k_{2}=\left(\frac{1}{2}-\frac{1}{4} j\right) e^{(-1-j 2) t}+\left(\frac{1}{2}+\frac{1}{4} j\right) e^{(-1+j 2) t} \\ & \text { } \quad \text{for } t > 0 \end{aligned}\]

with some effort you can write this as

\[x(t)=e^{-t}\left(\cos (2 t)-\frac{1}{2} \sin (2 t)\right)\; u(t)\]

for all \(t\).